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SUMMARY

This report presents a study of the stability and the performance characteristics of the general
class of earth-oriented spacecraft controlled by a gimbaled-reaction-wheel-scanner (GRWS) attitude-
control system. The desirability of establishing these properties is of practical interest because a
gimbaled-reaction-wheel-scanner offers the space industry a relatively simple and inexpensive self-
contained three-axis attitude-control package.

The report begins with the analytic determinaticn of the stability thresholds for this general class
of vehicle in terms of its six system parameters. These thresholds separate parameter sets that cor-
respond to stable systems from those that correspond to unstable systems.

As an aid to the development of the generalized stability thresholds, a modification to the fainil-
iar Hurwitz technique is presented. This modification was extended to characteristic polynomials of
various orders.

The device that actively controls the vehicle pitch axis is a pitch reaction wheel whose associ-
ated momentum varies periodically in response to periodic pitch-axis disturbance torques. Because
the pitch reaction wheel is also the source of pitch-momentum bias, the study of system stability in
the presence of a periodically varying pitch-momentum bias was considered. As a result of this study,
a technique is established for the analysis of the general linearized equation set when it contains
periodically time-varying coefficients. Furthermore, certain general conclusions concerning this class
of problem are drawn as a result of a comprehensive numerical study. This study concludes with an
attempt at the analytic determination of stability thresholds for a system with a variational pitch-
momentum bias.

The next area of work is the considerition of system performance in the presence of a realistic
disturbance torque model. A factor-of-merit function is established, and a driven solar panel assembly
is introduced into the spacecraft configuration. This function, along with a digital computer program,
allows a potential user the means of choosing a ‘‘best’’ set of system parameters from a large six-
dimensional array of possible parameters. The associated digital computer program offers the user the
option of maximizing the perturbations resulting from his disturbance model to make his findings more
meaningful.

The inclusion of the driven solar panels complicates the linearized equation set by the introduc-
tion of time-varying inertia terms. A technique is established for the analysis of the general linearized
equation set when it contains periodically time-varying inertia terms and all other terms are time
invariant.

Finally, the report concerns itself with the validation of the results obtained using a linearized
time-invariant equation set. The validation procedure makes use of linear and nonlinear digital com-
puter simulations and the Floquet stability criterion technique.

Numerical examples are presented to illustrate many of the topics discussed in this report.

ii
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THE STABILITY AND PERFORMANCE CHARACTERISTICS OF AN EARTH-ORIENTED
GIMBALED-REACTION-WHEEL-SCANNER CLASS OF SPACECRAFT*

by
H. Richard Freeman
Goddard Space Flight Center

CHAPTER |
INTRODUCTION

Stabilization and control, as it pertains to unmanned earth-oriented satellites, covers the entire
spectrum from fully active to fully passive control. When designing a control configuration for the pur-
pose of fulfilling a specific mission, one must consider which class of control will best meet the mis-
sion requirements. The choices include fully active, semiactive, and fully passive attitude control.

Figure 1.1 defines the orbit plane as well as the inertial and orbit reference coordinate systems.
The orientation of the orbit plane is assumed to be inertially fixed in space with respect to the sun;
however, the center of the orbit plane rotates about the sun with the earth. As the spacecraft travels

in the orbit plane, its velocity vector is defined to be the direction of its positive roll axis. Positive
yaw is defined to be the earth-pointing vector referenced from the spacecraft. The spacecraft pitch
axis is perpendicular to the orbit plane in such a direction that the roll, pitch, and yaw axes form a
right-handed system. The spacecraft orbit-velocity vector is parallel with and directed opposite to the
spacecraft pitch axis. This is illustrated by Figure 1.2.

In a fully active spacecraft control system, attitude and, possibly, rate errors are sensed in each
of the three spacecraft axes. The sensors provide inputs to the control mechanisms that force the atti-

tude and/or rate errors to zero, the spacecraft equilibrium state. These control mechanisms might in-

clude momentum storing reaction wheels and/or mass-expulsion-torquing systems. When momentum

storage is accomplished by the use of reaction wheels, a means of momentum control must be available

*Submitted as a thesis in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical
Engineering, University of Maryland, College Park, Maryland, May 1970.
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Figure 1.1-Definitions of the spacecraft orbit plane and the inertial and orbit reference coordi-
nate systems. The plane of the paper defines the orbit plane. The orbit reference axes travel at

orbit velocity about the earth.

to unload or to unwind the wheels. Unloading could be accomplished by the use of mass expulsion or
through the use of the environmental torques such as gravity-gradient torques, magnetic torques, and
so forth. It should be noted, however, that a favorable spacecraft inertia distribution is required to
properly utilize gravity-gradient torquing.

A spacecraft with a fully active control system has an excellent performance potential. Its sen-
sors can be designed to afford a high degree of pointing accuracy, and its control law can be estab-
lished to give decreased sensitivity to internally as well as externally generated torque disturbances.

Spacecraft with a fully passive control system rely wholly on environmental torques for their
means of control. The physical configuration is constrained, because for these spacecraft, a favorable

inertia distribution must be presented with respect to their environment for earth stabilization to be
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Figure 1.2-Spacecraft axes. The plane of orbit is the x, z plane. The orbit-velocity vector
points into the paper. For earth-oriented spacecraft, x =X,y =y, and 2 = z.

achieved. If the spacecraft moments of inertia are properly chosen, the gravitational torques exerted
upon the vehicle cause the spacecraft to align itself in a desired earth-pointing orientation. Neither
onboard error sensing nor actively mechanized torquing systems are required. However, in considering
the advantages of the implied simplifications, one must also consider the problems of inertia augmen-
tation, passive dampers, the reduction in pointing accuracies, and the increased sensitivity to inter-
nally and externally generated torque disturbances.

An obvious compromise between the two types of systems already discussed is a semiactive (or
semipassive) attitude-control system. A variety of semiactive configurations might be cited as examples
of this type of control. For instance, Figure 1.3 illustrates the use of a constant-speed pitch reaction
wheel to afford pitch-momentum bias to an otherwise fully passive gravity-gradient spacecraft. This
additional momentum vector normal to the orbit plane increases the spacecraft pointing accuracy by
augmenting the environmental torques acting upon the fully passive vehicle with gyroscopic torques
caused by the presence of the pitch-momentum bias.

The gyroscopic effect of this constant-speed wheel has a rate-seeking property. Gyroscopic

torques will always act to align the rotor spin vector with the angular rate vector of the spacecraft. If
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Figure 1.3—Pitch-momentum bias control augmentation.

one recalls that the spacecraft rotates about its pitch axis once each orbit, affording the spacecraft a
constant pitch rate, the usefulness of this pitch-momentum bias should become apparent.

A slightly more complex example might be one in which a control-moment gyro* is used to gener-
ate the pitch-momentum bias as shown in Figure 1.4. This is desirable because, in addition to the
pitch-momentum bias, the control-moment gyro affords system damping as a result of the relative motion
between its fluid-immersed gyro rotor and that of the main body to which the rotor is gimbaled. For a
single-axis gyro system, the gimbal axis must lie in the roll-yaw plane so that the rotor spin axis lies
nominally along the spacecraft pitch axis.

*A control-moment gyro is one that exerts control torques on the spacecraft, as opposed to one that is used to
sense attitude errors.
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Figure 1.4—Control-moment gyro attitude-control configuration.

A third and more complex example constitutes the subject of this dissertation. In the spacecraft

shown in Figure 1.5, the roll and yaw axes are passively controlled and the pitch axis is actively con-

trolled. The active portion of the control system allows a high degree of pointing accur&acy in pitch as

well as a decrease in sensitivity to internally generated momentum disturbances that might be produced
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aiong this controlled axis. Such disturbances might, for example, be produced by a large in-flight

tape recorder or by actively driven solar panels. The passive portion of the control system offers the
advantage of the simplicity inherent in a fully passive system, and the associated critical constraints
of inertia distribution that plague a fully passive system are somewhat relaxed. The spacecraft is de-
signed so that a single reaction wheel, when properly oriented, provides a pitch-momentum bias that
tightens the passive control of the roll-yaw axes. This reaction wheel is gimbaled to the spacecraft in
its roll-yaw plane by means of a torsion wire spring and an eddy-current damper. The gimbal, whose
axis is located at an arbitrary angle in the roll-yaw plane, provides both roll and yaw damping as a ze-
sult of spacecraft roll-yaw coupling. Gravity-gradient torques provide the mechanism necessary to un-

load the reaction wheel when it deviates from its bias speed as a result of spacecraft pitch perturbations.



Pitch control is implemented by actively controlling the reaction wheel about its bias speed. The
control error signal is derived from a conical infrared horizon scanner whose rotating optical prism is
physically mounted on the reaction wheel rotor. Because all functions are packaged into one unit, the
controller is called a gimbaled-reaction-wheel-scanner (GRWS) attitude-control system.

The purpose of this dissertation is to study the stability and performance characteristics of earth-
oriented spacecraft that are controlled by a gimbaled-reaction-wheel-scanner. Establishing these prop-
erties is of practical interest because a gimbaled-reaction-wheel-scanner offers the space industry a
relatively simple, iaexpensive, and self-contained three-axis attitude-control package. To date, only
sketchy attempts to analyze this class of artificial satellites have been made, and these analyses have
dealt mainly with a very special combination of spacecraft parameters (Reference 1).

The dissertation discusses in Chapters 3 and 4 the analytical determination, in terms of the six
system parameters, of the stability thresholds for the general class of spacecraft controlled by a
gimbaled-reaction-wheel-scanner. These thresholds separate parameter sets that correspond to stable
systems from those that correspond to unstable systems. Because the equation set that mathemati-
cally describes the system is highly coupled and extremely nonlinear, it was necessary to derive the
stability thresholds from a set of equations that were linearized about the desired spacecraft equilib-
rium position.

As an aid to the development of the generalized stability thresholds, a modification of the famil-
iar Hurwitz technique is presented. Chapter 4 concludes with the extension of this modified technique
to polynomials of various orders.

The device that actively controls the vehicle pitch axis is the pitch reaction wheel. the associa-
ted momentum of which varies periodically in response to pitch-axis disturbance torques. Because
the pitch reaction wheel is also tl.e source of the pitch-momentum bias, the second major area of work,
described in Chapter 5, was a stady of system stability in the presence of a periodically varying pitch-
momentum bias. As a result of this study, a technique was established that facilitated the analysis of
the general, linearized egquation set when it contained periodically time-varying coefficients. It also
proved possible, as a result of a comprehensive numerical study, to reach certain general conclusions
concerning this class of problem. Chapter 5 concludes with an attempt to determine analytically sta-

bility thresholds for a system having a periodically varying pitch-momentum bias.



The third major area of work was the consideration of system performance in the presence of a
realistic disturbance torque model. In Chapter 6, a factor-of-merit function was established and a
driven solar panel assembly was introduced into the spacecraft configuration. This function along
with a digital computer program allows a potential user the means of choosing an optimum set of sys-
tem parameters from a large, six-dimensional array of possible parameters. The associated digital
computer program offers the user the option of maximizing the perturbations resulting from his disturb-
ance model to make his findings more meaningful.

The inclusion of the driven solar panels complicates the linearized equation set by the introduc-
tion of time-varying inertia terms. A technique is established in Chapter 7 that allows the analysis of
the general, linearized equation set when it contains periodically time-varying inertia terms, and
all other terms are time invariant.

The final chapter of this dissertation concerns the validation of the results in Chapters 4 and 6,
obtained through the use of a linearized time-invariant equation set. The validation procedure makes

use of linear and nonlinear digital computer simulations, as well as the Floquet stability criterion
technique. Chapter 8 concludes with a numerical example that illustrates many of the topics dis-

cussed in this dissertation.
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CHAPTER 2
DEVELOPMENT OF THE SYSTEM EQUATIONS

2.) General Discussion
The spacecraft configuration that has been chosen for study is shown in Figure 2.1. This skewed
unsymmetric configuration was studied in order not to prejudge any conclusions that might have
seemed obvious had certain symmetries been assumed. Shown in the figure are the main spacecraft
body (body number 1), the gimbal and wheel combination (body number 2), and the wheel rotor alone

(body number 3).

We define the axes sets

s
X; =| ¥; |= inertial set of axes

and

N
X_=| v. ]: orbit reference set of axes.

The inertial axes are fixed in the orbit plane and have a fixed orientation with respect to the sun. The
orbit reference axes travel at orbit velocity about the center of the earth. They describe the desired

orientation of the coordinates of an earth-oriented spacecraft. The plane containing both x;and z, or

both x, and z,, is defined as the orbit plane.
We also define the specific axes

spacecraft roll axis

Xy
X 13 Yy )2 controlled axes of main body =| spacecraft pitch axis),
z spacecraft yaw axis



Gimbaled Wheel Combination (Gimbal Axis |Is The Xy Axis)

View Looking Into Gimbal Axis
Xy Out Of Paper

\
Yy

.
// View Looking Into

- /\\ Scan-Cone Axis
. a
AR
2

l \\\ Yo, ¥g Out Of Paper
Z
2

.
\23

X

Scanner Window (Wheel Is Located Behind Window.
Its Spin Axis Is The y,, Vg Vg Axes)

B Is Angle Of Gimbal Axis

y |s Gimbal Angle

a s Wheel Rotor Angle

yq I's Spacecraft Pitch Axis (Perpendicular To Orbit Plane)

z, I's Spacecraft Yaw Axis (Earth-Pointing Vector)

Xy Is Spacecraft Roll Axis (Velocity Vector)

QO |s Orbit Rate

Figure 2.1-Assumed configuration for the gimbaled-reaction-wheel-scanner spacecraft.
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Xg

sl

i

Yo |= principal axes of gimbal and wheel combination,
o

and

%3

X 3 =| Y5 |= principal axes of wheel rotor alone,

Z3

and the inertia tensors

1,11 12 -1,13)

_ inertia tensor of

@ = 1) @2 1@ |- S

-1,(31)  ~1,(32) 1,(33)

I5(11) 0 0
inertia tensor of It was assumed that
D, = 0 1,(22) 0 = the products of inertia
2 2 gimbal alone
equal zero.
0 0 1433
and
14D 0 0 It was assumed that
inertia tensor of the products of inertia
= ) _
g = 0 15(22) 0 ~ wheel rotor alone equal zero and that
0 0 1,(33) 15(11) = 15(33).

The reaction wheel scanner is gimbaled to the spacecraft by means of a torsion wire spring and an
eddy-current viscous damper. The gimbal axis is mounted on the spacecraft at a positive rotation 3]

from the positive roll axis in the roll-yaw plane.

11



The gimbaling parameters are

gimbal angle =y,

torsion wire spring constant = k g’
and

viscous damping coefficient = B g

It is assumed that the centers of mass of the three bodies are coincident and that they are located

~ o ~

at the origins of X, X, and X,

2.2 Active Pitch Loop

Attitude error sensing for the actively controlled pitch loop is provided by the conical infrared
horizon scanner portion of the gimbaled-reaction-wheel-scanner. The apex of the scan cone is
the origin of the ):(3 coordinate system {which is defined as the (X3, Y3 23) coordinate system] with
the scan axis in the direction of the positive Y3 axis. The scanning motion results from the rotation of
an optical prism which is attached to the reaction wheel rotor. Control logic maintains a minimum
wheel speed to ensure proper functioning of the scanner. A portion of the scan cone normally inter-
cepts the earth while the remainder of this cone scans through cold space. The higher earth tempera-
ture relative to that of space results in an earth pulse which is processed electronically to provide
spacecraft attitude information.

If the rotation angle 3 and the gimbal angle y, as defined in Figure 2.1, were both equal to zero,
the scanner output would be a simple function of the spacecraft pitch attitude. But in general, these
angles are not zero, and the scanner output must be defined as a complex function of spacecraft pitch
angle 0, spacecraft roll angle ¢, and gimbal angle y.

The orbit reference coordinate z, defines the local vertical, and the positive Y o axis defines the
scan cone axis.

The scanner error is defined equal to the angle /3 when the Z, axis lies in the ZYo plane. A posi-
tive scanner error 65 is defined as a positive rotation of the spacecraft about the positive Yo axis.

The minimum angle between the positive z, axis and z.y, plane has the magnitude (65 + B).
In order to derive an expression that relates 6 to 6, ¢, and y, reference is made to Figure 2.2a

and 2.2b.

12



+¥5 Scan-Cone Axis

IZ e - e Vo Axis Into Paper
)|
A B

2 - ® S\ Zg

Z;

(b) Negative y, Rotation

Figure 2.2—Horizon scanner related axes; (a) view of the plane of the local vertical and scan cone axis,
and (b) view looking down the scan cone axis.

We define €oy: oy and e,, as unit vectors whose directions are parallel to X5, Yo and Zy, re-

spectively. Similarly, €rxr €1y and e, are unit vectors having the same directions as X, ¥,, and z,,

respectively.

The vector cross product €y X €, defines a vector normal to the zZy, plane as shown in Figure

2.2b. If this vector is normalized and the result dotted into €,,, the resulting dot product is the cosine

of the angle hetween €oy X €y and ey,

e2y x€rz ~ .
]——_—e:Zy ol - €5, = cos [90 - (6 + B)] = sin (64 + ).

The resulting expression relating ¢ _ with ¢, 0, and y may be written

sin (6 + B) cos &

tan (0 + B) = cos (6 + 3) cos ¢ cos y - sin ¢ sin y 2.1

The block diagram shown in Figure 2.3 defines the active pitch control loop.
TW is the torque applied to the reaction wheel rotor, T, is the resultant reaction torque applied
to the spacecraft, ¢ is the error signal at the output of the lead compensation network, and OS is the

scanner signal output. (Note that wheel torque acts to reduce 6 and not necessarily 0.) The equa-

tions that describe this control loop are
e=[T 05+ 05~ Tye), 2.2)

13



p=e-

(HW - Hb)ct’

p="T04+ 0~ Toé - (H, ~ Hy)C,,

and
T, = kp[T 405 + O - Toé = (H, - HyC, |- H,B,. 2.3)
+GS T].S + 1 € + P K q 4+ +TW Kine_ __0
Seanner— Tzs + 1 _-:(?_‘ T —r((L matics
~ Lead Motor Torque
Compensation Proportional
Network To Error 1/8
Tachometer c B o
| ota
Gopmoock t H ‘ "4f1w Wheel
ain b
Variational Pitch Q:Aofor Momentum
ariationa oefficient
Wheel fE\;Atamen'rum f Viscous
Momentum s Friction
A

Figure 2.3—Active pitch control loop.

2.3 Dynamic Equations

An Euler rotational sequence of yaw, roll, and pitch has been chosen in order to relate the orbit

[aY]

reference axes Xr

to the spacecraft main body axes X ;- In order to simplify the notation throughout

the development of equations, sin (angle) will be written S (angle) and cos (angle) will be written

~ ~

C (angle). The coordinate transformation from X , to X . follows.

1) Yaw rotation

1 [cy sy o0
v |=l-s¢ oy o
z' 0 0

14

>
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2) Roll rotation

x" 1 0 0 tix'
y“1-10 C¢ Sé ||y
z" 0 8¢ Collz

3) Pitch rotation

x" ce 0 -Sérx” Xy
ylll - O 1 0 yll = yl
z" S 0 cell z” zy

The total transformation matrix is the product of the 3 rotational transformations. Thus,

co 0 -6 0 0[cvy sy O[%,
yoHH o 1 oo co sell-sy cu olly |
z, JLse o coJlo -s¢ ceflo o 1|z
or
x,7] [[COCY - 80848y COSY + S6S¢Cy  -SOCH [k,
e ~CéSy ChCyr sé¢ ||y, |

z SOCy + COS¢Sy  S6SY - COSACy  COCe || 2,

1

The Alr transformation matrix defines the matrix that transforms from X ; into X 1 coordinates

15



The notation used to expand the A, matrix into its elementary form is

a,(11) a,,(12) a (13)
Alr: alr(zl) alr(22) alr(z‘o’) :

311(31) a,,(32) a,(33)

The Ae 1 transformation matrix that defines the coordinate transformation from the axes of the main

[aY)

body of the spacecraft X, to the gimbaled wheel axes X o follows in two steps. Thus,

Xg CB 0 887 *,
Yol 0 1 0 |lyy )
1 s8 0 o8 )z

followed by

~«
)
1\
o
Q
=
w2
=
\<\

N
o
o
|
%)
Y
Q
S
N\

or

>0
[AV]

1

N
X

>l

~

¥ oa-1% L
Note that X1 = A21X2 = A12X2.

i

~

The transformation from the gimbaled wheel axes X, to the wheel rotor axes )_(3 is

Xg Ca 0 -8Sallxs
Yy F] 0 1 0 Yo
Zg Sa 0 Ca j{2z,
or
%, 4,3,
Note that ?2 = Agéig = A23§3.
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Since the transformations described throughout this development are orthogonal, A;jl = AIT;

Next, the kinematic relationships are developed for bodies 1, 2, and 3. We define

“1x @1xp TD1xp T O1x0
By=l @y 7| @iy T orys TOye |
D1z @iz T Dyz9 T 0150

where Wy is the ith component of angular velocity resulting from a jth angular rotation of body 1

(i=x,9.2j=¢, 0, ¢).

1) Yaw rotation

0 [-4SO0CHT| [@ixg
(’—)lx/::Alr 0 |= USb | “iyy |
" wCACH @44y,

2) Roll rotation

3 [co  sosé  S0CH|[F] [@ixe
B A 0| O Co sé |0 JFl wiys

o] Lso -cose s6CH_|| 0] Loy,

or
$Co
wg=| 0
»S0.
3) Pitch rotation
0 0 (l)le
Bip = Ayyn] 01 9 15| @1ye |

0 0 Wyza

The resulting total angular velocity of body 1, referenced to the orbit reference axes and in terms

of Euler angles and Euler angle rates, is

17



~S6Ce + $CO
B, o, |=| U¥Sp+6

JCOCH + $SO

But the spacecraft travels with an orbital velocity —Qoe Iy (i.e., with a velocity of magnitude Q,

whose direction corresponds to the negative pitch inertial axis), therefore

and
COSi + SOSHCyr
Wy =@~ Qg CoCyr ,
SOSY - CHSHCYs

where (7)11 is referenced to the inertial frame and ‘7’1r is referenced to the orbit reference frame. From

this point, all angular rates &, are referenced to the inertial frame (k = 1, 2, 3).

k

1y =S0CH + $CO ~ Q(CHSY + SOSHCi)
@y=| @y, |- S + 6 ~ Q(CHCY)

@, HCOCD + HhSA ~ Q(SOSY ~ CHSACH)

The total angular velocity of body 2 can be written as 0_)2 = wy (transformed to the body 2 coordi-
nate set) plus the angular rate of the gimbal. Note that the gimbal is only free to move about its x axis.
Y
Wy = A21(T)1 +H 0|

ol

The total angular velocity of body 3 can be written as wg = wg (transformed to body 3 coordinates)

plus the angular rate of the wheel rotor.

18



0 51 [0

w3:A32m2+ a :A31cu1+A32 0 Kl al

0 Q

The system dynamics are developed by writing one vector equation for each of the three bodies

considered.

Extended reference is made throughout the subsequent text to Goldstein (Reference 2). When
Newtonian mechanics are applied to a rotating body, the following relationships become important. If

we define G as an arbitrary vector quantity, then

dG = dG + dG

(as observed in (as observed in (as observed in
body coordinates) space coordinates) rotating coordinates)

but

G =G xdQ,
(in rotating coordinates)

where df) is the rate of rotation. Therefore

G = G +twx G,
(as observed in (as observed in
space coordinates) body coordinates)

where « is the angular rate of change of G. Finally, the three vector equations that result from apply-

ing Newton’'s second law to the three bodies chosen are the following:

T1:H1+51><H1,

T, =Hy + @, x Hy, (2.4)

and
T3:H3+63><H3,

where T, is the total torque applied to body k (k = 1,2, 3), H; is the total momentum of body k, and

@ is the total angular velocity of body k.

19



The components of the vector torque T, include gravity-gradient torques, control torques (both
reaction wheel and gimbal spring damper), disturbance torques, and constraint torques.

Expanding the left-hand side of each of the vector equations, we obtain

Tk:Tk1+Tk2+Tk3+Tk4, (2.5)

where T, , is the total gravity-gradient torque acting upon the kth body, T, is the total control

torque acting upon the kth body, T,q is the total disturbance torque acting upon the kth body, and
Tk4 is the total constraint torque acting upon the kth body.

Detailing the vector equation for the reaction wheel rotor, we obtain
Ty =Hg+ wg x Hg,

where Hq = <I>3<T)3.

After expanding,

H

Tax Hg, + ‘“3st2 T Wggllgy
T3y = H3y +wg Hgy —wg Hg,
Ts, Hy, + wgyHg, — o Hg

Detailing the vector equation for the gimbal and wheel combination, we obtain
T2 = H2 + 52 x H

2

where H’2 is the momentum of the gimbal alone plus that of the wheel rotor transformed into body 2

coordinates:

H2 = (13252 + A23H3.

After expanding,

Ty Hoy + w2yH22 - “)ZzHZy
Toy [F] Hay + @ortox ~ @oxHas
ng sz + (‘)2xH2y - w2yH2x

20
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Finally, detailing the vector equation for the main body alone, we obtain
T, =H +o, xH,

where H1 = 4)161.

After expanding,

T H H

1x 1x+w1yH12—“’12 1y
Tyl= H1y+wle1x—‘“1lez
Ty, Hipgt oty oy

Detailing the left-hand side of each of the vector equations, we recall that T, the torque acting

upon each of the three bodies, is composed of four components.

T, = Ty, t Ty ot Tys o Ty,

(gravity gradient) (control) (disturbance) (constraint)

Each of these components will be developed separately.

For the determination of T, Sabroff (Reference 3) showed that the gravity-gradient torque acting
upon an arbitrary rigid body may be defined as follows.

Assume that )E{R represents the body axes of the kth body and that these axes are located at the
center of mass of the body. Relate the body axes ')k(k to the orbit reference axes ;?r by the coordinate

transformation

where

>0
=

"
<
o

e
I
<
-
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and
akr(ll) akr(12) a,,(13)
Akr: akr(21) akr(22) a,,(23)].

a,(31) akr(32) a,.(33)
If the inertia tensor for the kth body is defined as

A1) -L(12) I (13)
I = @D L2 -Ie3) |,

-I,(31) -I;(32)  I,(33)

then the gravity-gradient torque vector acting upon the kth body is described by the following

expression:

p—

{[1:39) - 1122|2232, (39) + (122, (19)2,(33)

- (132, (13)2,,(23) - 1,@3)[ a3,(23) - 23,(33)]}

o 0 {[1,;(11) - 1,;(33)]akr(13)akr(33) + 1,’((13)[a§r(13) - aﬁr(33)]
k1~ 0

+ 1,(28)2,,(13)2,,(23) - [(12)8,,(28)a,,(33)} '

{[1,'((22) - I;((ll)]akr(13)akr(23) + 1;((12)[;11%[(23) - 312“(13)]

+ [1(13)2,,(23)a,,(33) - [[(28)2,,(13)2,,(33)}

From this generalized relationship, it is possible to detail the gravity-gradient torques acting upon
each of the three bodies under consideration. The inertia tensors used in the evaluation of these grav-

ity-gradient torques are

and
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=

where [ o 1s the sum of <I>2, the inertia tensor of the gimbal, and CIJ3, the inertia tensor of the wheel
rotor, transformed to the gimbal coordinates.

The control torques T, were defined to include both the torques resulting from the presence of
the actively controlled reaction wheel and those resulting from the gimbal spring damper.

Detailing the control torques acting upon each of the three bodies, the following relationships are

found to exist.

where T, is the torque applied to the wheel rotor minus the frictional torque.
“kgy = Bgy
0

0

Since body 2 represents the combined wheel and rotor, the rotor torque T does not appear in T22

either as a direct torque or as a reaction torque.

The reaction torque of the spring damper transformed to body 1 coordinates T12 is

kgy+ Bgy

For the purpose of detailing the disturbance torques, it was assumed that all disturbance torques
are generated in the orbit reference set of axes and are defined as Td in this set of axes. Under these

assumptions, the following relationships are found to exist.

Tgg = 45Ty,

Tog = 45, T4,
and

Ti3=4,T,
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Finally it is necessary to detail the constraint torques acting upon each of the three bodies.
When the constraint torques act upon the wheel rotor alone, the rotor is free to rotate about its
spin axis, yg, and is constrained about its Xg and zg axes. Therefore,

I‘34x

34z

When the constraint torques act upon the gimbaled wheel combination, the gimbal is free to

rotate about its X, axis and is constrained about its yo and z, axes. Therefore,

0

24 = | Togy

T24z

The constraint torques acting upon the main body alone are the reaction from the body 2 constraint

torques transformed to the body 1 set of coordinates. Therefore,

0

14 ~ “12 |7 teay

“Toy4,

At this point the three vector equations are completely determined. Although these vector equa-
tions allow us to write nine separate equations, clearly not all of them are independent. The set of
independent equations are those nondegenerate equations that remain after the constraint torques are

substituted into the three vector equations. Detailing, we see that

T H H H

34x 3x T wgyllg, ~ wg,llgy
0 = H3y+w3zH3x_w3xH32 —T31 —T32—T33,
Tsy, Hg, + wgyHgy -~ wg Hgy
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0 Hoy + wg Hy, — wg Hoy

Touy | =] Hay * @gsfloy — woxHo, |~ Ty — Tog — Tag.

Toysy Hy, + wgyHoy ~ wo Hoy

and

0 Hyy+ oy H H

1x 1z~ ®1z1y
A9 | Taay Hiyto Hyy -0l 1T - Tig - Tys-
“Toss Hy, + wlely - wlyHlx
The resulting nondegenerate equations are
Hg, + wg Hay —wg Hg, = Tgyy + Tgoy + Tggy,
Hoy t wgyHg, —wg Ho, = Toy ot Togy + Tagy
and (2.6)
H1x+w1yle—wle1y 0
Hy,tw; Hiy -0 Hj 3 =Ty + Tig+ Tyg+ Ay -Toy,
H1z+w1xH1y_“’1yH1x —T24z

These equations are functions of the variables and the derivatives of the variables listed below.
Clearly, the fully expanded equations will be extremely nonlinear and lengthy; however, they do con-
stitute a valid complete set of equations for the generalized spacecraft configuration under study. The
variables are ¢, the spacecraft roll angle, 0, the spacecraft pitch angle, ¢, the spacecraft yaw angle,
y, the gimbal angle, a, the wheel rotor angular velocity, and ¢, the electrical signal out of the lead
network in the active pitch loop.

The sixth equation required is Equation (2.2), the electrical error equation,

e = [T405 + 65 - Toé].

Note that 3 and H, also appear in the final set of equations, but these are system parameters and

not variables. We define
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Appendix A contains a detailed development of the dynamical and kinematic equations. Expansion

of the left-hand side of Equations (2.4) results in the following expressions:

T, = 13(22)‘25131(21')@11. + Sag (@D, + dge(21)y + 255217 + a}

+ (13(11) - 13(33)>w3xa)32. (2.7)

Note that when the rotor is assumed symmetric, the last term vanishes because

I5(11) = 1,(33).

Ty, = lp(1D[ g (1D, + Sag (106, + 7] + dg5(IDIAD 25,10y + Sag (1Dey,]
+ dga(12)15(@2)[ & + 2gp(21)y + Sag (20w ;| + 453(13)5(33) 255(31)7 + Sag, (3w, ]
+ 2gs(IDIAD [d5e(11)7 + 25511 + Zdy; (1o + Sag,(10é ]
+ a(12)15(22) [ + dgy(21)y + ag(RDY + Zag, i)y, + Sag; (RD)éy,|
+ 323(13)’3(33)[532(31)7 + age(B1)y + 2dg, (8w ; + 2331(31')(;,“]
+ {Sa,,@00, H1,33)[Say, 300 ;| + 25611, 25511 + Sag (e ]
+ 323(32)13(22)[d + agy(21)y + 2a31(21)m“] + 2y,(33)1,(33) [332(31))'/ + za31(31)a,1i]}
- {2321(3i)w1i}{[2(22)[2321(2i)“’11‘ + agg(R1I(11) [25,(11)7 + Zag,(1Nwy; |

+ agy(@22)15(22)[a + agyRD)y + Zag; @ ;] + 255(@3)]5(33)[ 25,81 + Sag, (3o, ]} @8
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5
|

£

Y

Tix = DGy, - [(12)6,, ~ 1(18)6y, + 05,0 1,[1,33) - 1(22)]

~ o[, + 1820y + oy, [1,@De, + 1@, ] 2.9)

Ty = @D, + 12Dy, ~ ;i + 0,0, [ LD - 1,33)]

- 012w, + 1[,(18)0,,] + 0, [1@De,, + 32w, ]. (2.10)

and

Ti, = 1,806 1, = 1[@6y, + 3D, + wy,0,[12) - LaD)]

- mlx[11(21)w xt 11(23)wlz] + w1y|:11(12)w1y + 1130y, | (2.11)
Expansion of the right-hand side of Equations (2.4) yields

Tyy = Ty = kp[Ty6 + 0, - Toé - (H,, - H))C,] - H, By, (2.12)
Toy = 308[1(33) + I3(11) - 15(22) - 15(22))25,(23)ay,(33) ~ ky = B,y (2.13)

T, = 308{[1,33) - 1,(22)]a,,(23)2,,(33) + ;(12)2,,(19)2,,(39) - ;192 (19)2,,(23)

- 1, @3)[a3,(23) - a3 B} + a,(AKy + Bi) ~ 25020 5, ~ 21,13 gy, (2.14)

Ty, = 308{[1,41) - [,39)]a,(19a,(33) + 1,(1)[a%,(13) - a%,(33)] + 1,(2a;,(19)2,,(29)

- 1,(12)2 (23)a,,(39)} + 8,521 (kyy + Bi) ~ 81,22 Ty,, -~ 2,5(29) Ty, . (2.15)
and

T, = 30§{[1,(22) - 1,a)]a, (19)a,,(28) + 1,a2)[a%@3) - 33,(13)] + 1,(13)2,,(23)2,,(33)

- 1,(®3)a, (13)a 1r(33)} + 312(31)(kgy + Bg)'/) - 312(32)T24y - a,,(33)Ty,, - (2.16)
In order to detail the five nondegenerate equations of motion, it is necessary to define

W1y ~80C¢ + $CO —~ Q(COSy + SHSHCyh)

@4

y $8¢ + 0 - Qp(CHCrp) : (2.17)

©1, $COCH + ¢SO — Q (S80S — CHSHC)



po— e

~S0CH + $CO + QSO — Q,CHSACH) + G(-QSHCHC)
@y + ¢(Q868yr — QCICY) — OCHCH + hhSOSp — dSO

e WS¢ + 0+ pQSHC + hQCHSY + PCeh : (.18)

61, COCH + ¢80 + 6(-Q,COSY — B SHSHC) + H(QCHCHC)
+ (-QgSOCY - Q,COSHSY) + FOCH — 6SOSh — 1) FCHSeH

and

COCY - SOS4S)y  COSy + SOSHCy  -S0CH
Ay = ~CpSY CopCyr sé | (2.19)

SOCy + COSHSYr  SOSys ~ COSHCyr CHCH
Because all transformations are orthogonal,
a,0(i) = 3, (D),
and only Ap g Of A £p will be given.

CB 0 -SB
Ay =|sBsy ¢y cpsyl.
S8Cy -Sy CBCy

0 0 0
Ay =| yCy8B -8y ¥CyCB
-¥8ySB  —yCy  -¥8yCP

Ca 0 8Sa
Age =] O 1 0
~Sa 0 Ca

—-aSa 0 aCa
-aCa 0 -aSa
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CaCB - SaSBCy  SaSy  -CaSB - 8aCBCy

Agy = 53Sy

Cy CpBSy ,

S8aCB + CaSBCy -CaSy -SaSf + CaCBCy

and
-aCfB8Sa + y8y8aSB ~ aCaSBCy

A31 = yC¥83
aCaCpB - aSaSBCy - ySyCaSB

(Recall that 8 is a constant.)

The equation set for this complex eleventh-order system is now completely defined. However,

these equations would be prohibitive even to write down, and linearization must be performed before

the discussion can be continued.

aCaSy + yCySa aSaSB — aCaCBCy + y8aCBSy
-y8y yCBCy
-yCyCa + aSaSy —aCaSB — yCaCBSy — aSaCLCy
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In general, any nth-order system can be represented by the vector equation

X=(x),
where
Xl
X2
X -
xn
and
. J
X2
X = ,
| *n]
where x4, Xg, + v+, X are the various system states. Also,
- 4
£,(X)
[o(X)
(X) =

DEVELOPMENT OF THE LINEAR!ZED EQUATION SET

3.1

CHAPTER 3

General Discussion

Lf"(x)_
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where f i(X) is some function, linear or nonlinear, of the system state variables.

This vector equation can be rewritten as shown below.

X = AX + G(X) ’
where
-
Xy
X
X = _ | = state variables,
XHJ
on o |
0x 4 8}(2
i{?
A= axl ,
2,
L aXn—
and
- -
G (%)
Go(X)
G(X) =
G (X)

Expanding the vector equation as shown makes it possible to represent all of the linear first-order

terms by AX while G(X) represents all of the other terms. Since by definition, G(XO) is zero, then in
order to investigate stability in the neighborhood about which the system was linearized, it is only

necessary to investigate the stability of the system of equations X = AX.

Clearly the system represented by these equations is asymptotically stable within some neighbor-
hood of X, if and only if all of the eigenvalues of A have negative real parts. Conversely, the system

is unstable if any of its eigenvalues have a real part which is positive or equal to zero.
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Because the A matrix was fabricated by the technique of linearization, any conclusions reached
concerning either stability and/or system performance must be verified. Clearly, these conclusions
will be accurate for some limited variation of the state variables about X, their equilibrium state.
However, whether or not this limited range of variation is sufficiently large to be of practical impor-
tance remains to be determined. ‘

Aside from the necessary verification suggested above, situations that are expected to give rise
to large deviations of any one state variable must be considered separately. Chapters 5 and 7 discuss

in detail problems of this nature.

3.2 Linearizing the General System Equation Set

A gimbaled-reaction-wheel-scanner-type spacecraft would fulfill conveniently the mission require-
ments placed upon a meteorological or observatory class of spacecraft. This class of vehicle is ex-
pected to maintain a single orientation in space, and its meteorological sensing devices are fixed to
the main spacecraft body.

For the ease of locating sensors and experimental packages, it is of practical interest to define

the equilibrium state vector as follows:

1
1
1
1

3.1
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Only the wheel rotor speed has a nonzero equilibrium condition, and this equilibrium speed can be

S
TR

found from the expression defining rotor torque T,
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In order to linearize the five nondegenerate equations presented at the end of Chapter 2, each
must be expanded into a Taylor series expansion about the system equilibrium. All terms of second

order or higher are discarded.

The Taylor expansion for a function of n state variables, (xl, Xo, © o, X,), can be written
~ of(xy ... xp) ofxy ... %)
f(xy ... 0x.)=£(x; ... %)) +(X1_X10)T +...+(xn—xn0)T .
X0 XO xO

When the expression l‘(x1 ... xn) is sufficiently complicated, it is cohvenient to break up this

expression and to write
f(xy ... x))=6,xy ... %) ... fo(xqy .. xp)

or, in closed form,

=}

f(xy...x,)= f(xy...xp).
i=1
It is then possible, and probably more simple, to expand each of the 1'1-():1 ... X,) into a Taylor series
separately and finally multiply the resulting expressions together. The two results will be identical
as long as terms of second and higher order are discarded.
It is possible to completely define the five nondegenerate equations of motion interms of the linear-
ized expressions for 51, 51' and the coordinate transformation matrices, in view of this simplification.

Detailing, we obtain

Wiy g;'l)_QO"Z'
wiy =] 0-9Q | (3.2)

Wi, lZJ+QOqS
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o l=] 6 | (3.3)

and
1 v -0
A=y 1 b |- (3.4)
0 - 1

Because all transformations are orthogonal, it was assumed that the linearized transformation matrices
are related by A;é = Agp while their elements are related by apg(ij) = agp(ji). For this reason, only

Apg or Agp will be written, as was done with the nonlinear coordinate transformations.

— —

cg o0 -s
A21 = |vSB 1 yCB1.
S8 -y CB
[0 o o]
A = |7SB 0 yCB
o 5 0
Ca 0 Sa
Ay=|0 1 0]
~-Sa 0 Ca
-aSa 0 aCa
A23 = 0 0 0
-aCa 0 -a@Sa
CaCB - 8SaSB  y8a  -8BCa — 8aCf3
31 = ¥SB 1 yCB

SaCB + CaS8 ~yCa

-SaSf3 + CaCp



and
~aCaSB ~ aSeCB  y8a+ yaCa  aSaSP - aCLCa

A31 = S8 0 yCB
-a88a + aCBCa -yCa + yaSa -aSaCPB - aSBCa

Note that ¢ is not a state variable and cannot be linearized out.

3.3 Linearizing the Scanner Error Equation
The scanner equation was developed in Section (2.2) and can be written as

sin (6 + B) cos ¢
cos (0 + B)cos pcosy-singsiny ’

tan (04 + B)=

Taking the arc tangent and linearizing, we obtain

I 9 tan~ ! [£(6¢y)] 0 tan~ ! [f(O¢y)] 9 tan~ ! [£(6gy)]
(65 + B) = tan™ * [{(O¢y)] 0+ ——— 06 + B e 0¢ + — 5 Oy.

Evaluation of this expression gives rise to the simple result

0, +B=0+p
or (3.5)
6.=0.

3.4 Determination of Rotor Equilibrium Speed

The useful wheel torque was derived in Section (2.2) and can be written as
T, = kp[T,04 + 0 — Tyé ~ C,aly(22) + C,Hy | - Baly(22).

Solving for the equilibrium momentum, we obtain
a[kpC,15(22) + B;lg(22)] = C,kpH,
or
Cikp

alo(22) = =——+
3 CakT + B,

Hy = equilibrium momentum,
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where a in this expression is the actual wheel speed. Linearizing about a small variational wheel

speed, we obtain

c C,k
_ . ) ) t ] X
T, = le:TIOS 0 - Tgi- Ct<al3(22) " ey 7B, Hb> + ctyb] - B[|}113(22) P T E, Hb] :

where a in this expression is the variational wheel speed. Finally, eliminating the bias momentum, we

see that
Tw = kT [Tles + GS - T2é - Ctd13(22)] - de13(22), (3.6)

where a is variation wheel speed.

3.5 Resulting Linearized Equations

After much algebraic manipulation, the linearized set of equations of motion can be written as
shown on the following pages.
Recall that Hy is the pitch-momentum bias and is considered constant. Itsderivative, Hb =aly(2R),

is carried in these equations for its use in Chapter 5.

F3y:

15(22)0 + 15(22)d = T,, = kpT 0 [kpC,15(22) + Blg(22)]a - kpToé + k0. (3.7
2x°
[CBIy(11) + CRI;1]é + [F8BI,(A1) - SRI,AD]Y + [I,(11) + 1;AD)]F
+{2088[1,(22) - 15,(33)]} 6 + [SBQ,15(22) - S8R I,(11) ~ 28BQ,15(11) ~ HySB] ¢
+{1,(22)CBQ, - L,UDCAY, - 21,(11)Q,CP - [1,(33) - 1,(22)]CAQ, ~ CRH,} &
+ By + {1522)0B08 - I;(1DQECH - [1,(33) - I5(22)]CRAS - 3CBAE[15(33)
+15(33) - 15(22) - 13(22)] - CBQH, J b + [I5(11)Q38B - I5(22)8BQE + H,SBQ, ¢
+ {13208 + k, - [1533) - 1,(22)]Qf - ;0 DQS - HyQ, - 305C>B[15(33)

+15(33) - 15(22) - 1522)]}y = ~[15(38) -~ 1,(22)] SPQE. (3.8)
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1y:

1,(12)8 - {1,(11) + 82B[1,(33) + I,(11)]} & + { 1,(13) - SBCB[I5(11) + 1,(33)]}
+ [2Q,1,(32)] 6+ { Qo1 ,(13) ~ Q1,(31) ~ Q,SBCB[1(33) — 15(22) - 15(22) + Ip(11)
+ 21,(11)] - SBCBH,} & +{ Qg1 (11) + Q1,(83) - Qp1,(22) + QSZB[15(33) - 15(22)
- 1,(22) + I(11) + 21,(11)] + S*BH, } s + {CBB, - SBH), - 8SB[1,(33) - I5(22)
- 1,(22) + L(11) + 1,10 ]}y + [-8Q81,(12)] 6 + { 8Q2[1,(38) ~ 1,(22)] - QF[1,(22)
- 1,(33)] - S2BQE[15(22) + 15(22) — I,(11) - I,(11)] + SZRQH, ~ 3Q58°B[1,(22)
+15(22) - I,(11) - I,AD)]} ¢ +{ QF1,(31) - QESBCA[15(22) + 15(22) - I5(11)
- ;A1) ] + QSBCBH, } + { -SBil4(22) + OBk, ~ SB3AZSBCA[I5(11) - 15(33)]

- 302828C[1,(22) + 15(22) - I,(11) - I;(11)]}y = -[3Q51,(23) + 1,(32)QF |.

—[15(22) + 15(22) + 1,(22)]6 - 1,(21) + I, (23 - I;(22)d + { @ [1,(23) + 1,(32)]} &

3.9

-{Qo[1,12) + 1, @D} + {398 [1,(33) - 1,(11)] - (828 - C2B) [FI,(11) + 1,(33)] 3% } 6

+[-8081,(12) - Qf1,(12)] ¢ - Q&1,(32)y = 30 {[-1,(33) + 1,(11)]SBCB + 1,(13)} .

(3.10)



1z*
1,(32)8 + {1,(31) - SBCBI,(33) + I;(11)] } ¢ + {-1,(88) ~ CPRI;(11) + 1,(33Y]}

+ [2901,(12)]) 6 + {-9,1,(33) + Q,[1,(22) - 1,(11)] - CPRQ[15(33) - 15(22) + I,(11)
- 1,(22) + 21,(11)] - CBH, } + {Qy1,(13) + QSBCR[1,(33) - I5(2R) - 1,(22)

+ I,(11) + 215(117] + SBCBH,, ~ Qo1 BV} +{ -8BB, - CBH), - CBQ,[15(33)

- 15(22) - 1,(22) + I,(11) + L,aD]}y + [3Q81,(23)]0 + { 851, (13) - QECBSB[15(22)
+ 1,(22) - [,(11) - I5(11) | + SBCRH,Q, - 3QESBCA[15(22) + [5(22) — I(11) - I5(11)]
+ 021,(13)) ¢ +{ ~C280E[14(22) + 1,(22) - L,(1D) - I,(11)] + Q,CPBH,, - QF[1,(22)
- 1,1}y + {-CBiily(22) - k,SB - CR(BAZ{SBCA[I,1D) - Iy(33]})

- 3028BCB[1,(22) + 15(29) - I,(11) - L]}y = 1,(12)Q5 . (3.11)
The required sixth equation is Equation (2.2),
Toé+ ¢~ T10g - 65 =0.

The equilibrium state vector has previously been defined as

SR S
|

o]
o
|
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11
o ® © © o © © o °© o
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Observation of the right-hand side of the linearized set of equations, however, shows that if X, is
to represent an equilibrium state for the system, certain constraints must be placed upon the physical
configurations of bodies 1, 2, and 3. In particular, the gimbal alone must have spherical symmetry so
that Io(11) = 15(R2) = 1,(33). Also, the product of inertia terms associated with the main body must be
zero.

Although certain very specific combinations of body 1 cross-product inertia terms and gimbal
inertia terms give rise to the desired equilibrium, these are of no practical interest.

As a result of the physical constraints placed upon bodies 1, 2, and 3, the set of linearized equa-
tions have been rewritten and presented in their final form on the following pages.

Recall that 8 is the gimbal axis angle as shown in Figure 2.1 and is constant. H, is the pitch-
momentum bias and represents the bias wheel momentum about which the pitch wheel is actively con-
trolled. The a term that appears in the linearized equations is the variational wheel speed about this
bias. Finally, the state variables e and ¢ are error signals associated with the active pitch loop and

appear because of the lead network in that loop.

Tsy:

1,(22)0 + 1,(22)d = T,, = kpT, 0~ 1;22)(kpC, + Bpa = kpToé + kpf. (3.12)

2x°
CB[I,(11) + I;(11)]é = SB[I,(11) + I;(1D)] ¢ + [I,(A1) + I;(AD)]¥ + { SBR[ I5(22)
- (1) - 2I;(A0] - HySB} ¢ + {OBQ[15(22) ~ (1) - 2I5(11)] - CBH} Y + B,y
+{40Be3[I5(22) - 1,(11)] - CROQ H, ¢ + {Q3SB[I,(11) - I5(22)] + H,8BQ,}w

+ (QF{15(22) - (1) + 3C2B[15(22) - 1533)] }+ k, — Hy D)y = 0. (3.13)
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1x°
~{1,(11) + 52B[1,(33) + 1,11 ]} é ~ SBCBI,(11) + 1,(33) ]+ + {-SBCBH,
- 008BCHLI,(11) + 2I5(11) — 1,(22)]} & + {Q,[1,(11) + 1,(33) ~ 1 (22)]
+ Q828 [Io(11) + 2I4(11) - 1522)] + SZBH, }ir +{QSB[15(22) - Iy(11) - I;(11)]
- SBH, +CBB,}y +{40Z[1,(33) - 1,(22)] - 48%BQf[I15(22) - 1;(11)] + S°BQyH, | &
+{9QSBCA[-Qy15(22) + Qpls(11) + H, |}y +{ 8Q58%BCR[15(11) - I5(22)] + CBk,

~ 8Buly(22)}y = 0. (3.14)

ly:

-[1,22) + 15(22) + 1,(22)]7 - 22 + {302[1,(33) - 1,11)] } = 0. (3.15)

1z*
~SBCA[15(33) + I;(11)] b + { -1,(83) - CEB[I;(11) + 1,(33)]} o + { -1 ,(33) + Q4 [1,(22)
- 1,AD] - CRRQ [ I5(22) + L,(11) + 21,11)] - C*BH,} b +{ SBCALI,(11)
+ 214(11) - 15(22)] + SRCRH, L +{ CAQ[15(22) - I,(11) ~ (1)) - CBH,, - SBB,}y
+{40ECBSB[15(11) - 15(22)] + SBCRH, Q)¢ +{ -CEBQE[15(22) ~ I;(11)]
+ QuC3%AH,, - Q5[1,(22) - 1,1}y +{ -k S - 3C*BSBAF[15(22) - 15(11)]

~ CRal4(22)}y = 0. (3.16)

Error Equation (2.2):

Toé+ e~ T0 - 6,=0.

The terms 2i13(22) = Hb have been included for use in Chapter 5.
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CHAPTER 4

STABILITY

4.1 General Discussion

In order to investigate system stability it would appear that one must deal with a complex eleventh-
order system of six equations. However, one immediate observation that can be made from the linear-
ized equation set is that the six equations decoupled into two sets of three, one of fifth order and the

other of sixth order. The T,,, T,,, and T,, equations are functions of ¢, s, and y, while the equa-

tions for T3y' le, and ¢ are functions of 6, a, and e.

The fact that the equation set decouples requires that the variations of the system variables as
well as variations in the pitch-momentun bias H, be small. In practice, however, H), variations are
often large, and the coupling that results must not be overlooked when arriving at the requirements for
total system stability. This topic is considered in detail in Chapter 5.

The fact that the six equations can be decoupled could have been anticipated, as gyroscopic terms
always contain the products o, @j, where (i =1,2,3:j=1,2,3;i#J). As only first-order terms have
been retained, only the gyroscopic coupling terms that involve @, have been kept because @y, alone
contains a constant term (i.e., W1y = 0 - QO, where QO is constant). Clearly, gyroscopic terms that
appear in the pitch equations are not functions of v whereas those that appear in the roll and yaw
equations are. For this reason, roll is coupled to yaw, but neither roll nor yaw is coupled to pitch.

It is of interest to determine the stability thresholds for the generalized class of spacecraft whose
attitude is controlled by means of a gimbaled-reaction-wheel-scanner. A threshold of stability sepa-

rates those spacecraft configurations which are stable from those that are unstable.

4.2 Asymptotic Stability of Linearized Equations

A common technique used to determine the asymptotic stability of a linear set of equations is the

examination of the real part of the characteristic roots of those equations. - A set of equations is
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asymptotically stable if and only if all of its characteristic roots have negative real parts. The equa-
tions are unstable if any root has a real part which is positive or equal to zero.

Any set of linear equations can be written in the form

X - 4X,
where
-y lq
X2
X =

X0 )

When the system matrix A is time invariant, one can represent the homogeneous portion of the set of

first-order equations in Laplace transform notation,

sX(s) = AX(s).

The initial conditions have been assumed to be absent because the Steady-state aspects of linear sys-

tem performance are fully determined in their absence. This expression can be written

[4-sI1X(s)=0,

where s is the Laplace operator and [ is the identity matrix. If the solution to this equation is to be

nontrivial, the familiar eigenvalue problem results:

|4 - sl =0.

Evaluation of the determinant results in the system characteristic polynomial, and the resulting values
of s are the eigenvalues or the system characteristic values.

For the specific problem under study, it is possible to write the characteristic equation as the
product of two polynomials, one of fifth order and the other of sixth order, because the system equa-
tions can be decoupled. It would indeed be a tedious task if one were to attempt to determine the roots
of the characteristic polynomials. Fortunately, however, the Hurwitz criterion (Reference 4) affords
both the necessary and sufficient conditions required to assure that all characteristic values have

negative real parts without, in fact, having to solve for the actual characteristic roots.
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Define the characteristic polynomial to be of the form
n n-1 —
a,s'+a, ;s "+-..-+a;st+ag=0.

Hurwitz states that two conditions must be satisfied in order to ensure that all zeros of the character-
istic polynomial have negative real parts.
I) All of the polynomial coefficients must be of the same sign, none being zero.

II) Each member of the sequence of Hurwitz determinants Dl, D 9r - D n—1 defined below, must

be positive.

D1 “a;> 0,
a4 9
Dy, = . ‘ >0,
3 42
and
a, a, 0
Dg=lag a, a;|>0.
a5 a, ag
The following diagram may serve as a memory aid in constructing the various Hurwitz determi-
nants.

D, 00
D, a, 0
Dy a5 | 2y
D, a; ag a5 a,| a,

The determinants are formed as illustrated by forming determinants of successively larger numbers
of rows and columns starting from the upper left corner of the array shown. Any coefficient absent
from a particular characteristic equation is replaced by zero.

Consideration of the sixth-order characteristic polynomial requires the evaluation of D through

D.; and consideration of the fifth-order polynomial, D, through D,.



It is possible to solve for the coefficients of the two characteristic polynomials by algebraically

manipulating the linearized Equations (3.12) through (3.16) and (2.2). That is,

9, 6
T3y .
€, €
5 4 —
le ; > b.s"+b,s¥+ .-+ bis+by=0

Error equation

and

T2x '72" l/'

y 6 5 -
Tiyq @ D | 2gS° +258°+---+a;s+tay=0.

le V Y
The sequence of Hurwitz determinants that are of interest are
D,=2a,>0,
Dy = aja; - agag > 0,

=agD, - a(aa, - asao),

w
|

D,=a,Ds - aza,D, +a a;D, + agas(a,a, — azag),

5
and
- _ _ 22,3
D5 = a5D4 363303 + asala5D2 agay .
It is often convenient to define Dy and D, in terms of an intermediate quantity E,.

D3 = a3D2 - alEz,

D4 = a4D3 - a235D2 + 31361)2 + aoasEz,
where
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4.3 Definition of Characteristic Polynomials

Before continuing with a detailed development, the following definitions will be made in order to

simplify the notation that follows.

Recalling that <I>2 has spherical symmetry,
I5(11) = I,(22) = 1,(33),
and that the rotor is symmetric about its spin axis,

I4(11) = 1,(33),

we define
I(22) = 1,(22) + 1,(22),
Ip(22) = 1(22) + 15(22)
D = kyC, + B,
K g, = 3Q301,(11) - 1,(33)],
and

Iog = Ig(il) + I5(KK) ,

where i =1, 2, or 3, while k = 1 or 3, and

Iy = 1,(1D), I;o =1,(22), and I, = 1,(33).

Also,
pa = Qo[15(33) - [5(22) + I,(11) + I5(33)],
pp = Qo[15(R2) — Ipg] .

pc = 405[1,(11) - 15(22)]
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and

pp = Q2[1,(1) - I(22)],

pp = 305[1,(11) - 1;(22)] .

The coefficients of the roll, yaw, and gimbal related characteristic polynomials are listed below.

3.0:

48

3213{‘ [Q8HE + (op + PIQHy, + pcPp] U415 - 111)}
2al102 ey2 ., 2 2
+C '8{490(113 = 1) [QoHypp + pppg + QiHy + pp + 2QHypp ~ PEQU o - 111)]}
4 212
+4Qa( 5 = 1i) o = 111)kg = QoHy, = pp) = k[QGHE + (pp + pc)QoHy + ppec]

+ kgﬂg[(lm ~ 1L QHy + pe) — 4y — 1) QpHy, + pp)]-

SBCB{Qg(PB ~ H)[4@QpH,, + pp)Iyg = 119) + QoHy + pc)yg ~ 141)]
+ Qo + ppHy + paHyQg + pppa)O§[40 15 — 11p) + Uy~ 11))]

+ Qo(yy + Iig = Ii)[pplep = pe) + Qolly(op — pc)]

+ ppQo[Q(Hy + )Ty ~ 119 — Qo + pp)Iyg ~ 15 - ’11)]}

t Bg{ﬂg[(Qpo tpc)ig = 14y) = 4QpHy + pp)I 5~ 115)]

_ro2g2 ag _
[Q6Hb + (pp + Py + pepp] + 40U — 11145 112)}-

Szﬁ{(PB = Hy)[(Hy + p Q3015 = 111) = QoHy + pp)U 1 = 15 = 11p)]

+ Q310 = 1y Mgg@QH, + p + pp) = 15[ QFH + (op + pcIQH, + PcPD]}

* C23{90(112 - Lig = 1;D[QoHy + pc)(Hy = pp) = pp(Hy + pg) + Qo =115 = 1)
= QHy + pploglyy ~ 4pp Q515 ~ 11y + I1g) = (Hy + pgXpg ~ HAQGU 15~ 11p)

- 815508115~ 1,9)(QoHy, + pp) = 11 (QGHE + p} + 2QpHy pp) + QL - 111)111PE}

+ {1k @QoH, + pc + pp) = (HE + pf + 2Hyp )k, + 4155081 5 — 1,08 5~ 1)

* (QoHy, +pp - kg)lugg(’m —h- 123ng§(112 ~ Iy - 411393(113 ~ 11 QH),

+pp - kg) + 4kg123Q§(113 - 112) + 93(112 - 113 - 111)2(90Hb +pp - kg)

+ Qoly + ppdkglyy + (Hy + pg)Qgyo = 1y = 15 )Rk, =~ Qo = pp) + (o), + PC)113kg}'



ag = 5BCR [’13(PEHb +ppPatPpPat QoHypa + ppHy) = QolagUyy + 115~ 110 )Xpg + pp ~ PC)
2
11(pppa + HyQopa + ppHy) + pg(lyg = 1,00 Hy + (Hy + p)051og[ 4115 ~ 11)

~ Uy~ 1] + (g = b){ pplyy + Iigpe — 19595 [4(’13 B ARUT S 111)]}]

+ Byl 1y QoHy + 1y1pp + 115Q0H, +1

2 2
11PD 13P¢c ~ QU g - 14p)

2
= 2(Hy + p QU + 115~ 11p) =~ (HE+ p§ + 2Hyp,) + 1,0(2Q0H, + pe + pp)

+ QS{Uw tlgg) 4y~ 1yg) ~ (g +1gg)I 45 - ’11)}] :

=8%B[(pg ~ Hy)yg(Hy + pa) + 11315580 H, + pg + pp) = 15505115~ 11,)]

2 2
+ CRB[pg - HI, ((Hy + p) + 1 19a(@Q0H, + 2pp) + 15,4051 15 ~ 1)

2 _ _ 02 - _ _
+P5111(113+123)]+ 123[490113(113 112) Q0’11(112 111) 123kg 113kg

2 _ . _ _ _ _ -
T QaUyy + Iyg - 1) Uyg = Tig = 1)+ ppQoyp ~ Iig = 1)+ QopaUg — 115~ 14y)

Illkg] i kg113111 11113Q Hy,
ag = SBOB[Qlagly(33)U,, — 11p)] - Bg[123(123 thigt i+ ’11113]-

ag @~ Iga[lialyy + Tog(T,C°B + 113323)] ~
To make the stability problem manageable, certain approximations were made at this point of the de-
velopment. Nominal values and an associated dynamic range of 100 to 1 were chosen for each of thé
system parameters. Those terms more than three orders of magnitude below any other terms included
in any polynomial coefficient were dropped. In determining which terms should be dropped, the full
dynamic range of each parameter was considered. In this manner, very little generality has been lost
and with the exception of certain terms in the a; and ag coefficients, the terms that were found to be
negligible were all of those terms containing the inertia 123 and/or the terms p , through pp. The 123
terms were not dropped from ag oragat this point in the development.

The coefficients resulting from this simplification are listed below.

2, = C* B{Qf‘f”g[(ln )t Al - 113)]}+ Iy - 112){98[4(112 ~ 1) QoHy, - k) - th;]}

3 2,2
t Uy - 1)~ 4y - 1] Q3k Hy, + K QHE .
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N 2
4= BgQO{Q’O(Ill - IiH, ~ 4001~ 119)] - 4015 = 119)00H, + Hb} .

_ 202 2
a,= C? B{HbQo[g(’n — 1)+ 30y, - ’13)]} Q5@ Hy ~ kJ[111U 1y ~ Tyg) = 41150015 = 115)

2 2 2 _ _ - - _ _
_(112"]13—111)]+Hb[kg‘90(111 Lig 113)].+90kgHb[(111 Iig) - Uy 113)]'
a,=B 021, 1, )+l ,(I,o -1, )+ U p-1,0-1 )2:|+(1 1,21 )Q.H, + H3.
3~ Bg 10| 1111 T e 13412 7 113 1271137 1t 11718 12R%p T Hp

_ 2 2 2 _
a,= ¢ plagay, i)+ Iig[Hy + 1k, QoHy)] .
8 = Bg[111113 +lpgyy +1,9)]-

A2 2
ag= C% BLIZg1y, ~ 1,9 ]+ IpgU gl + Iglys)

Proceeding in this same manner with the development of the Hurwitz Dy, Dg, D,, and D, it was
found that those elements of the D’'s that contain the parameter I, were at least two orders of magni-
tude smaller than any of the other elements. It was therefore concluded that it was valid to set the
remaining I, 4 terms as well as the entire coefficient a4 equal to zero.

Further discussion of this characteristic equation is left for Section (4.5).

The coefficients associated with the rotor, error, and pitch equation related characteristic polyno-

mial are listed below.

blzkggD,
b2 = (T2D + 1)kgg +kp,

by = Tokge + kpT, + [15(22) + 122)] D,

T,y [15(22) + 1(22)] D + I(22),

l

and

o
1

5 = Tol(22).
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The fact that the wheel rotor equation represents a rate loop rather than a position loop is exem-
plified by the fact that by = 0. Therefore, for stability, it is necessary only to deal with the fourth-

order characteristic equation
1 4 7 ro_
bys +---+bls+b0_0,

where b; = b;  fori=0,1, 2, 3.

The nature of these coefficients, together with the physical requirement that the inertias, D, T,,
T2, (T1 - T2), and K, are all individually positive quantities, cause this characteristic equation to be
one which is relatively straightforward to handle. In fact, the only condition posed by the requirement

that all the polynomial coefficients have the same sign, is that

21

111 A

Expansion of the Hurwitz determinants yields

- 2 .
Dy = Kgg {Tz(kggD) + To(DT kp + kp + ko) + [Tykp + 13(22)1)]} + kp[kpTy + 1(22)D]
and
- 2 2 ;
D, = I(22){(kgngT2D + kg kp t kp Ty - Tg) + kT D=[1(22) + 215(22)]

. 2 )
+ [k gokp T, ToD + 1@2)k D)1 + TyD) + kAT TyD + [15(22) + I(22]] kpD)

+ 1,22){ Dk To[(Tok g, + kT X1+ TyD) + kpTy + 1522)D] + DkpTy [T kyp + DIg(22]]} .

Clearly, both D.2 and D, are always positive because of the physical constraints stated earlier, and no
further conclusions can be drawn from this characteristic polynomial.

In comparison with the example above, the complexity associated with the application of the
Hurwitz criterion to the roll, yaw, and gimbal related characteristic polynomial is by far a different
matter.

In general, aside from those unusual cases in which the coefficients and associated Hurwitz de-
terminants result in simple expressions, application of these criteria is limited to numerical problems
that seek to establish whether or not a particular set of parameters gives rise to a stable system con-
figuration, or those in which a single system parameter is adjusted until stability is achieved. There-

fore, in order to determine algebraically the stability thresholds for the generalized gimbaled-reaction-
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wheel-scanner class of spacecraft, it was necessary to develop a somewhat modified Hurwitz criterion.

The following section deals with a detailed discussion of this modification.

4.4 Development of Modified Hurwitz Criterion

Recall that the application of the classical Hurwitz criterion to a fifth-order characteristic polyno-

mial would require, for asymptotic stability,

a;>0for i=0,---,5,

and

D,>0fork=2,---, 4.
It would indeed be a horrendous, if not impossible, task to demonstrate that these nine algebraic quan-
tities are simultaneously greater than zero. Clearly, however, at a threshold of stability, at least one
of these quantities must pass through zero.

With this point in mind, it is possible to show that before either Dy and/or Dy can go to zero, D,
must already have gone negative. This means that if any of the D’s are to establish the stability
threshold, then that D must in fact be D4. Furthermore, if any coefficient goes to zero, then at least
one of the determinants will already be negative except when either a, or a; go to zero first. But in

this problem, ag = 111113Bg # 0, so that as far as the coefficients are concerned, we must only concern

ourselves with the possibility of a5 = 0 first.

In summary, the results of this modified technique show that at most three situations need be con-
sidered in order to define the stability thresholds for a general algebraic fifth-order system.

(I) Setay=0. Demonstrate that on the a, = 0 line,

a;20fori=1,...,5
and
S
D,=20.
Set a5 > 0. Demonstrate that within the a; > 0 region,
a;>0fori=1,...,5
and
D,>0.
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The complete set of thresholds has been established if these conditions are satisfied. If not, it is
necessary to proceed to Step (II).

() Set D, =0. Demonstrate that on the D, = 0 line,

a;20fori=0,...,5.

Set D 4> 0. Demonstrate that within the D, > 0 region,

a;>0fori=0,...,5.

Similarly, if these conditions are satisfied, the complete set of thresholds have been established. If it
is not possible to satisty either condition (I) or (II), then it is necessary to proceed to Step (II).

(III) Demonstrate that a piecewise combination of (I) and (II) can be satisfied.
Proof: When the sequence of determinants is the limiting factor in the determnination of stability thresh-
olds for a particular set of system parameters, it is convenient to set equal to zero that D j which first
approaches zero. Having done this, it is possible to express the other determinants, taking into

account the constraints imposed by the fact that one of the Di's is identically equal to zero.

Recall that

D'2 Zaj,ay - aga, >0,

)
i

g = ag(2,a5 - aoas) - ay(aa, - asao) >0,
and
D4 =a,Dg - azang + 3035(3134 . 3035) >0.

Assume that a; > Ofor i =0, 1, ---, 5.

A) Let Dy = ¢, ¢ > 0 but arbitrarily close to zero.

Select systein parameters such that
Dy = asa; —ajag = ¢

and

?
D, =a,lagh, - a,(aa, - 3530)] - aya Dy + 3pag(a,a, ~ 233g) > 0.
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Substituting with ¢ -~ 0,

2
D, = —5711214(31&4 - 3530) + 3035(3134 - ajag) >0
and
_ _ 2
D,=-(aja, - azay)",
which is clearly negative.
B) Let D3 = ¢ with ¢ » 0.
Select parameters such that
D3 = a3D2 - :111(311514 3530) =0,
or
a3
(a,a, a5a0) = a—l D,;
but
2
D4 = —aza5D2 + 3035(3134 - 3035) >0,
that is
Cwab B g,
D4 = -aga Dy t+ 303531 0> 0:
and
o 2
alD4 = a5D2,

which is clearly a negative quantity.
C) Let D2 = D3 =~ ¢, with € - 0.
For this trivial case, D, = 0 as well.

Therefore, if a Hurwitz determinant is the limiting factor in the determination of stability thresholds, it
is necessary to consider only that for D, = 0,a;>0fori =0, ..., 5; and within the region where

D4>0, a;>0fori=0,...,5.

Similarly if a stability threshold is crossed because one of the a;’s approaches zero first, it is

possible to set that a; equal to zero and to evaluate the D;’s accordingly.
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A)

B)

)

D)

E)

F)

LetaO:O, a;>0fori=1,.--,5.
Dy =aza; >0,
Dg=a,(aza, - a.a,)>0,
and
D, = al[a4(a3ag - a,a,) - ag(aza)]> 0.
Note that D4 > 0 is implied by and is a weaker condition than D,>0.

Leta,; =0,a;>0fori=0,2, 3, 4,5

Dy =-ajag <0.
Let a, =0, a; > 0fori=0,1.3,4,5.
D2:—aoas<0.
Letag=0,a;>0fori=0,1,2, 4,5.

D2: agdy> 0,

Dg = -a,(aa, ~ aga,),

and
2
a.D ——-D—?i—Dga <0
1747 " g, 2% .
Leta4:0,ai>0f0ri:0,1,2.3,5.
D2 = agay - agag > 0,

D3 = a3D2 +aaza, > 0,
and
- _ _ a2,2 .
D4 = 3235D2 agag < 0 for Dz > 0.

ag =110 3B, #0.
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Therefore, if a characteristic polynomial coefficient going to zero is the limiting factor in the determi-
nation of a stability threshold, it is necessary to consider only the following.

For ag = 0,

a;20fori=1,---,5and D, 2 0;

and within the region where ag > 0,

ai>0fori:1,---,5and D4>0.

No other useful cases are found by letting combinations of the a;’s go to zero simultaneously.

4.5 Application of Modified Hurwitz Criterion

Conveniently, it was possible to establish that the gimbaled-reaction-wheel-scanner class of
spacecraft falls into Category (I). As a result, it was possible to express the stability thresholds for
a complex system in relatively simple terms. In fact, this method of presentation made it possible to

give physical meaning to these thresholds as well as to indicate the type of instability encountered

once a threshold was crossed.
The details of this example are presented below.

It is convenient to express the coefficients of the characteristic equation under study as

_ 2 r 2
Ay = (kg - QuH[Q8(U 1 ~ 11 ~ Qo J408U 5 ~115) - QoH, ] - QZHES®B [405U1 1, - 1,5) - QoHy,]

_022n2 2
QoHE C 5[90(112 B 111) - Qpo] ’

A
1
"E;: [93(112 =1~ Qpo] @93(112 - Iyg) - QOHb] ,

_ 02 _ _ _ _ 2
Ay = Ok, QoHy) [, C1yg+ 211 + Uy + 31U 1o~ 9] + kg[QOHb(Ill 2l + 119 + Hy ]

219 ~2 2p2qR2
+QoHy CoB 1y + 4l g~ Iy ]+ QoH S*BTyp = 1yy + 115

A
3 _q2 2
B, " Qp[1y4(-lyg t Rlyg) + Uyp + 319005 - 1))+ Qo) -2l + 1) + HE,
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|- J—

*y

- 2 2 2
Ay = (kg - QoH 1 o+ HEI, C®B + 1,87 B),
and
4,
~*11%13°
Bg

A normalized set of equations results when the following substitutions are made into the equation

set shown above.

Iy =aly,

Iig=plg.

Iig =13,

Hy = hQl .,

— 2
kg = KQZI,,

1N
I

6-2n;3 _
2n—32n90 Ifg, n=0,1,2,
and

1+2n

4-2n;2 _
—5 - al+2n90 113, n=0,1, 2.

The resulting normalized equations are:

ag=(k~h(-a+p-h4p-4-h) -h?CRB(-a+p-h -h’S2BMUp-4-h),

a;=(a+tp-mMdp-4-h),

ag = (k- h)(ag) + h* C®B(2a +2p -3+ h) + h* $2B(-p + h + 2),

(4.1)

(4.2)

(4.3)

ag=a(-p+2+h)+p°+20-hp-3+h+h®=(-a+p-hp-2-M+@p-4-h+1, (4.4

a, = a(k - h) + h¥a C2B + 8%p),
and

35"—'(1.

(4.5)

(4.6)
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The expanded Hurwitz determinants can be detailed in terms of the normalized coefficients. The

resulting expressions are

D
h—z =(-a+p-hC?Ra(Tp -6 - M)+ 9(p - D?]+4p-4-h) S2B(4p-3-h), 4.7
Eq 2 2
—5=(atp-mO Bla4p -3 -h)] +(4p-4-h)S*B(p - by, (4.8)
D3
3= (atp- B) C?B [«®(9p® - 8p - h) + 9a(1 = p)*(—p + 2 + h) + 9(1 - p)2(a3)]
+(4p-4-hys28[alTp -6 - b + 9 - D], (4.9)
and
D4
—5=9% - D2[a(-a + p - W3 C*B + (—a + p - h) $°B C?B(ay)

+(4p-4-hstB]. (4.10)

Recall that E, was defined in Section (4.2) as

E2 =aa, -aga,.

With the coefficients and the Hurwitz determinants now completely defined, it is possible to ana-
lytically demonstrate that the characteristic polynomial under study falls into category (I) of the modi-

fied Hurwitz criterion presented in the previous section. An analytic proof follows.

The expression a4 = 0 is a single-valued function of a.
Solving for dp/da on the a; = 0 line, we find

a (k- h)(4p - 4 - b) - h*C3B

da ™ (k- py[(-a+p-hd+(dp-4-h)]- h3C3B - 4h%S28

From Equation (4.1), when a4 =0,

h*s?B(4p - 4 ~ h)
(k- h)(4p - 4 - h) - hH%C?B

(~atp-h)=
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Substituting, we obtain

i [k - n)dp-4-h)- 1:202[3]2

da [k - hy4p - 4 - h) - h2C28]° + 4h*s®BCB

From this expression,

The second form of dp/da shows that ag = 0 has two branches, one having a horizontal asymptote

FG™* for which dp/da = 0, and one having a 45° asymptote JK for which dp/da = 1. For dp/da =0,

(k~h)(4p-4-h) - h*CPR=0,

or
(4p-4-h)-= *-h)
and for dp/da = 1,
) 4TS
4(—[1 + p - ) - "(—k"_—h)' .

Figure 4.1 is a representation of these curves along with the a, = 0 lines, MN and QR.

For Case I, consider the conditions (k - &) >0 and 8 £ 0° 90° p / 1.

In this case, the horizontal asymptote of a, is above the horizontal a; = 0 line MN, anad the 45° a,
asymptote is to the left of the 45° a; =0 line QR.

The lower branch of the a5 = 0 curve TU passes through the intersection of the two a, = 0 lines,

and both a; and a, are simultaneously zero at the point of intersection:

(a, p)?( *%,1+£—>.

This aj = 0 branch lies entirely above the two 2, = 0 line segments QL and LN

In order to determine the positive regions of a;, consider the expression

92 _ h24023(-—a +p - 02+ 82B(4p - 4 - h)?
9p (atp-h@4p-4-h

*Lettered references to line segments refer to those shown in Figure 4.1 for Case I, and to those shown in Figure
4.2 for Case IL.
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(~a+p-h)=hS?B/(k - )

2 2 dp/da = 1, ay = 0 asymptote
(-4+4p-h)=h"C*B/(k - )

dp/da = 0, a, = 0 asymptote

Figure 4.1-Representation of 2, and a, lines shown in the plot of p versus a.

This expression is positive everywhere on the upper a4 = 0 branch (curve VW) and negative every-
where on the lower a; = 0 branch (curve TU). These facts are sufficient to show that ay > 0 every-

where above the upper and below the lower branches of the a, = 0 curves.
(a) Consider the upper branch of ag =0
ag=1+(atp-MNp-2-M+{@p-4-h.
On the horizontal a, = 0 line,

3n\ , (3h¥
3321+(~a+p~h)(p—2—h):a(l+—z)+(-?> ,

while

da 4

At a =0,

60



which is always greater than zero. At the intersection of the two a, = 0 lines (point L).

and a4 = 1, which is clearly greater than zero.
Since 633/6a is constant for any particular value of h regardless of its polarity, and since ag > 0
at both @ = 0 and @ = 1 - (3h/4), a5 > 0 at all points on the line segment where 0 < a < 1 - (38h/4).

Negative a has no physical meaning. On the 45°a, = 0 line @R,

ag=1+(p-4-h).

Therefore, on and above MN, the horizontal a, = 0 line (4p -4 - h) =0, ag 21 and ag is clearly
greater than zero.
dag
a—p-:(—a+p—h)+(p—2—h)+4:a+2+2(—a+p-h).
This slope is positive everywhere for positive a and to the left of the 45°a; = 0 line. Since ag is pos-
itive or zero on the a, = 0 boundaries MLR and increases as p increases, then a5 > 0 everywhere in the
upper a, > 0 region bounded by MLR and ag > 0 everywhere in the upper a; = 0 region, that region
bounded by the curve VW.
From Equation (4.10), it is clear that D, > 0 everywhere in the upper a, > 0 region above MLR,
since both (~a + p — h) > 0 and (4dp - 4 - h) > 0 in this region.
It follows, therefore, that excluding the cases for which h =0 and p = 1, D4 is greater than zero
everywhere in the upper a, 2 0 region on and above curve VW.
Because a must be a positive number, Iy, =alg, both a, and ag are greater than zero everywhere
in the region of interest.
All that remains to be shown for Case I(a) is that a, > 0 in the upper a; > O region. For this con-
dition, an indirect demonstration is easier than a direct one.
Fe _ 2 2
—5=(atp-hC Bla(dp -4 - h+ 1)+ (4p - 4 - DS - W]
Each of the terms that make up E 2/112 are either equal to or greater than zero on or above the horizontal,

and on or to the left of the 45°a, = 0 lines. That is, on and above MN, (4p ~ 4 ~ h) 2 0; on and to the
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left of @R, (-a + p — h) 2 0; and on and to the left of @R, (p — h) 2 a. Therefore, E, 2 0 on and above

MLR, and E o > 0 above the upper a, = 0 boundary defined by curve V'W. Recalling that the determinant

2

EqDg - agDg

D4 =—
2y

and rewriting it, we see that
— _ne
(aghy alEg)E2 D2a5

4
ay

D

Finally, regrouping terms gives
— _ 2 2
aD,=agDE, - (a EG+ agDg).
However, because
D'2 =apa; - a,a

073~

and because it has already been demonstrated that D4, E,, ag, ay, ag, and ag are all greater than zero

in this region, it follows that a, must also be positive.
(b) Next, consider the lower branch of a; = 0.

Because this branch passes through the intersection of the two a, = 0 lines and remains above the
line segments @L and LN, the region between these line segments and the a, = 0 lower branch, defined
by the curve TU, is excluded from the region of stability because a < 0 in this region. The region be-
low the a2, = 0 lines bounded by @LN will be excluded by demonstrating that either D4 or ag are nega-

tive in this region.

h4—[9(§‘i1—)21 = a(-a+ p - B)3CHB + (~a + p - NSZBCER(ay) + (4p - 4 - WSB,
and in this lower region both (-a + p — h) and (4p — 4 — h) are always negative. Because only odd
powers of these terms appear, all of the components of D, must be negative unless a, itself is nega-
tive. In either case, either D, <0 and/or a5 <0, and the entire region below the lower branch of
ay = 0 is excluded from the region of stability.

In summary, for the case of (k — h) > 0, the only region that was found to be stable was that region

bounded at the bottom by the upper a, = 0 branch.
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For Case II, consider the conditions (k — h) <0 and 8 £ 0°, 90°; p #£ 1.

When k = h, the a; = 0 curves degenerate into a single line because a; is no longer quadratic in p.
The upper section of this line curves up and goes to infinity while the lower section becomes a straight

line heading toward minus infinity parallel to the a axis. This line passes through the intersection of

the two a, = 0 lines as shown in Figure 4.2 and has the slope defined by

dp_ 1

do 4tan®B+1°
From this expression, it is clear that for 1 > dp/da > 0, 2, is less than zero above and to the left of the
a4 - 0 curve, and is greater than zero below and to the right of it. But neither a, nor D, nor a4 con-
tains the factor (k — #1), so that this lower region bounded by the ay = 0 curve is excluded for the same
reason that it was when (k — h) was greater than zero. One can recall that at least one of these quan-
tities was shown to be negative at all points below the Case I lower branch of the a; = 0 line. (In

Case I, it was the lower branch ay = 0 curve that -passed through the intersection of the a, = 0 lines.)
For (k - h) < 0, the horizontal ay = 0 asymptote lies below MN (Figure 4.2), and the 45° ag=0

asymptote lies to the right of QR. as is shown in the figure.

P Rale

K

a,=0 W A;/da =1, a; = 0 asymptote

74V

N
dp/da = 0, ag= 0 asymptote

a;=0 —

a

Figure 4.2—Representation of ajand a, lines for (k — h) <0. The ay =0 curves
degenerate into the single upper branch VLW when k = h.
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For this case, it is the upper a; = 0 branch (curve VW) that passes through the intersection of the
two a, = 0 lines. Further, this branch remains entirely below the a; = 0 boundary MLR. On the a; =0
curves,

daq  4hC®B h%s°g

= + :
dp 4dp-4-h -atp-h

However, since this is always negative on the upper aO': 0 branch and positive on the lower ay=0
branch TU, the only region for which a, is greater than zero is that between the two a4 = 0 branches.
Clearly, this region is excluded because at least one of a,, D4, or ag have been shown to be negative
in this region. It may therefore be concluded that no stable region exists when (k - k) < 0.

In summary, with the exception of those cases for which 8 = 0° 8 = 90° or p = 1, the stability
threshold for this complex system is completely defined by the upper aj, = 0 curve VW (k > h). Specifi-
cally, on and above this aj = 0 curve, it has been shown that a;> 0(i=1,...,5) and D, > 0. The mode
of instability encountered at the threshold stated above is a loss of null reference. When ay = 0,
one root of the characteristic equation is equal to zero. If the remaining fourth-order characteristic
polynomial were examined for its stability properties, one finds that it is stable both on the thresholds
and within the regions under discussion.

Consider the special case of 8 = 0°. In this case, the curved a, = 0 boundaries degenerate into
its asymptotes. The horizontal line, (k -~ h)(4p — 4 - h) - h® = 0, is always above the a, = 0 line,
(4p-4-h) =0, for (k- h) > 0. On this boundary, a, alone is equal to zero with all other quantities
of interest positive as before. However, the 45° asymptote, (~a + p — h) = 0, now coincides with
the 45°a, = 0 line and along this line, a, and a;, become zero simultaneously. As a result, all of the
Dl.’s and E, are simultaneously zero and the characteristic equation has two roots of s = 0 along this
line. The stability properties of the remaining third-order characteristic polynomial were studied, and
it was found that the D2 Hurwitz determinant associated with the third-order equation is zero. This
condition implies that the system will have an undamped oscillation in addition to two roots equal to
zero on this particular stability threshold.

Next, consider the special case of 8= 90° Once again, a, = 0 degenerates into its two asymp-
totes. In this case, the 45°line, (k — h)(~a + p — h) - h® = 0, is to the left of the a; = 0line, (-a +
p—h)=0, for (k- h) > 0. It is the horizontal line that now coincides with the a, =0 line, (4p -4 -

h) = 0, and on this line, a, and ag are simultaneously zero. Accordingly, the characteristic equation
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é);hibits two s = 0 roots along this line. The D, Hurwitz determinant associated with the remaining
cubic equation was examined in this case, and it was found to be greater than zero. This fact implies
that the remainder of the system roots, along the segment in question, have negative real parts.

Finally, consider the singular line p = 1. Independent of all of the coefficients of the character-
istic polynomial and all of the other determinants, D, = 0 for p = 1. This fact implies that if any por-
tion of the p = 1 line lies within a region that has otherwise been found to be stable, the system would
exhibit a sustained oscillation if p were set equal to one.

For h > 0, the a, = 0 line lies above the p = 1 line, so that only negative values of h are of inter-
est when considering this special case. There will be a segment of the p = 1 line above the upper

branch of the ag = 0 curve when

c?B  s*B
2
(k*h)>h (—_T+1TI~1 .

In order to give physical meaning to this singularity in D,, it is informative to evaluate the various

coefficients when p = 1.
ag = (k- h)(-a+ 1 ~ h)(-h) ~ i*C®B(~a + 1 - h) ~ h®S2B(~h),

a, = (-a+ 1~ h)(-h),

el
1

o= (k= W[a(l + B)- h+h*]+ h?CPB(2a - 1 + k) + B3S2B(L + b),

ag=a(l+h)-h+h?,

a, = ak - ) + h%(aC®B + S2P),
and

25 ~a

It can easily be seen that a, = a, tajand ag=a, +a;. Substituting for ag and a,, the characteristic

polynomial can be written as

2 3 4 5 _
ao+als+(a4+ao)s +(al+35)s ta,s” +ags =0.
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But this can be factored and rewritten as

2 ,
(s* + 1)@y + a;s + a,s” + ags

3y=0.

This presentation of the fifth-order characteristic equation clearly illustrates the term giving rise to

the sustained oscillation mentioned earlier. Since orbit frequency QO was normalized out of the coef-

ficients, it is clear that the sustained oscillation will occur at orbit rate.

Examination of the derived thresholds makes possible a very simple physical explanation of the

stability threshold asymptotes (4p —4 — h) = 0 and (~a + p — h) = 0. These terms, as will be demon-

strated, simply represent the restoring torques for the roll axis, yaw axis, and gimbal equations.

Roll:
Gyroscopic torque
Gravity-gradient torque

Momentum bias

Total restoring torque

Yaw:
Gyroscopic torque
Gravity-gradient torque

Momentum bias

Total restoring torque

Gimbal:

Total restoring torque

R

R

12——13crp—1
3(12—13)oc 3(p-1)
—h
4p -4 —h
12—Ilocp—a
none
—h
p—a-h
k-h

Stability requires that the three restoring torques be simultaneously positive.

4.6 Extension of Modified Hurwitz Technique

It was found to be an interesting academic exercise to extend the modification of the Hurwitz cri-

terion and to consider characteristic polynomials of various orders.
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(I) Consider the fifth-order equation

5 _
ao+als+---+a5s =0.

For this polynomial, the necessary and sufficient conditions for all roots to have negative real parts

are

a;>0fori=0,---.5,

D, =aa, ~ajaz >0,

D, = ag(a,a, - aja,) - a,(aa, - agag) >0,
and

D4 = a4D3 - 212515D2 + 3035(3134 = aoa5) > 0.

But D, ~» 0 first requires that
D,=-a,a, -a.a)* <0
4 174 570

and Dg - O first requires that

o 2 .
21D4 = &5D2x 0.

Therefore, for a; >0 for i = 0, ---. 5, D, must approach zero first.

D4 = :314D3 -~ .212215D2 + 3035(3134 -

and from the expression for D3, we obtain

_ 23Dy =D
(a,a, - azag) a;
Substituting in the expression for D 4 We obtain
_ 1 9.2
31D4 = - EID3 +-é_1D2D3 - 3.5

3

DZ>0.
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Solving for the zeros of D 4 With a; > 0, we obtain

Dg = %’2 (33 ¥ Va§ - daa; )

The quantity a 1D 4 Can be plotted against D3, and a typical curve is shown in Figure 4.3 as curve

B. Also shown in this figure are the two limiting curves, marked A and C. Curve A represents the

parabola for which

or

while curve C represents the parabola for which

P
a Ao\
4—5<< 3 .
a; \

Curve C represents the uppermost permissible curve, because, if the system is to be stable,

neither a; nor a; may be negative.

a.D

B = Typical

Figure 4.3-Stability constraints for fifth-order polynomial.
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As a result, the shaded region under the parabola and above the D, axis represents the stable
region and the parabola itself represents transitional stability. For stability, D3 must take a value

defined by
D D
?2(33 + \/ag - 43135) >Dg> —22(33 - \/ag - 4a135) )

The fact that Dg must be real for any physical system adds the constraint that

a a
32 >4 —5.
a, ag
Next, consider the special case for which
%
a8y 43

Let D, =0 and D, > 0. Djis then given by

Dg=-aj(aja, - azay).

But
D, = 34["31(3134 - 3530)] +agac(a;a, - a5a.) = 0,
or
D,=~-(a,a, -a.a =0
4 174 570 !
and therefore

Dy =0.
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Next let D 4= 0 and D3 - 0. D2 is then obtained from

D3 = a3D2 - 31(3134 - 3530) =0,

or
_ _ 23D
(a2, asao) ay
But
ag
D, = —3235D2 +aga, 5:D2 =0,
or

and, therefore,

Since

D2 = agad; — 83ag = 0

and

D,= -a,(aa, -aza ) =0,

and if there is to be a transitional case for D, = D = D, = 0, the following ratios must hold:

(IT) When this modification was applied to a fourth-order equation, a similar set of results were

obtained. Consider the polynomial
a +a,s+---+a,st=0.
0 1

The necessary and sufficient conditions for all roots to have negative real parts are

a1.>0for1':0,---,4,

70



D2 =ajag - ajag > 0,
and

- _ _ 52
Dg = ag(aja, — agag) —aja, > 0.

But D, - O first requires that
— _nR .
D3 =-aja, < 0,
and therefore, for a; >0 for i =0, - --, 4, Dg must approach zero first.

= — _ a% >
D, = 33(3132 aoas) aja, 20,
or

that is,

Solving for the zeros of D3, we obtain

a3

N Y/
?_Tao(der a§~-4aoa4).

1

A plot of D3 versus 33/31 is shown in Figure 4.4(a), and a plot of D, versus 33/31 is shown in Figure

4.4(b). For stability, a3/a1 must take a value defined by

1 a3 1 \/__"—
éa_o(a2 + \/.ag— 43034) > 3_1 >§2—0(32 - ag - 43034).

In addition, since as/a1 must be real for any physical system, there exists an additional constraint
2
that ag > 4a,a,.

Consider the special case shown in Figure 4.4(a) for which ag =4a,a,. For this case, only a

transitionally stable point can be found. This point is defined by

o

a, Ra
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a,/
ag/a, 3 °1

Figure 4.4-Stability constraints for fourth-order polynomial, (a) D3 versus ag/a,
and (b) D2 versus 33/31'

(III) Fin: \ly, consider the sixth-order characteristic equation

6 _
ag+ta;s+.. tags =0.

The necessary and sufficient conditions for all roots to have negative rea. parts are

a;>0fori=0,---,6,
D2:3132—3033>0,

3= 23Dy —a,(aja; —az29) >0,

D4 = 34D3 - 32a5D2 + 211216D2 + aoa5(3134 - 3530) >0,
and
_ _ _ 53
D5 = a5D4 3633[)3 + 363135D2 agay > 0.

But Dy ~ 0 first requires that

n

D3 —31(3134 - 3530),

—a4al(ala4 - agag) +agag(aa, - 3530)’

N
|

and

_ 2
D4 = —(3134 - a5ao) <0.

72




D3 - 0 first requires that

then

and

Manipulating, we obtain

But

so by substitution, we obtain

or

and

and therefore

D4 > 0 first requires that

D

But

Dy =agh, - a,(a;a, - 3530) =0,

a,D

(a3, ~ agag) =

Dyag

D4 = ---a235D2 + 3136D2 +aga,——

ay
_ P
31D4 = Dz(alaG - 35D2).
D

_ o [« - 2
5 = a5D4 + ala6(a5D2 3631)'

ab,
05:35D4+36 o D2 ,

_ 2
DoDy = Dy(agDy, -~ ajag),

D3
D2D5 = al'D—,
2
2
D -a l—)i<0
5 1D§ )

3 A

- a,a D2 + 313602 + 8035(3134 - 3530) =0.
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S0 by substitution, we obtain

- - _ 2 -
a,D, =Dyaa, agag) + Do(-azaza, + ajag + apagag) = 0.

But
a%a, + a.(aqa, - 2,a,)| = afa, + a.(-D,)
196 5\0%3 291 1“6 5\ Fo/
and therefore

Dy(agDy, - afag) = Dg(aya, - aga))

and
_ 2
D, = -agaDg + 36?1(35D2 - agay).
Substituting, we obtain
(2,2, - azag)
D5 = —3633D3 + alaGDST ,
or
-D, + a,D
B 3" “3¥e
D2D5 = -agag DyD, + 3136D3<—~51—>.
Finally as
_ 2
D2D5 = 36D3 <0,
then D5 <0,

for 02 >0. It follows that, fora;> 0 for i = 0,..., 6 and for D2 >0, D5 must approach zero first.

2,3 >
a,a.D 3631—0'

Dy =asD, - agaghgs + aga,agD, -

6
after substitution for D,
= ~ _ , _ , ~ a2,53> o
D, = 35[34D3 aga Dy + a,agD, + ajag(aa, a5a.0)] agagDy + agaja D, - agay 2 0;
after rearranging terms,

- _22p2 a30p ~Dg\ o D D - 2224
D5 = —35D2 + a5D3 2, /+ 2313635 o~ 8gaga, Dy - agad;
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and, after multiplication,
— _aR 2 3 _ o2 _ _ 42,5
a D, = -afa,Dg + (a azD, + 2ajaga.)D, +[ (-a%agaz - a_Dy)D, - aga3 |,
or
- 24 (a2 42 2 3 52,5
ale = :15D3 + ( ajagags + a5asD2)D3 +( 35a102 + 2a%a.a.D aeal).

3 1765672

Once again, one can solve for the zeros of the quadratic equation ale in terms of the coeffi-
cients of either D3 or D2. As was true in the cases of the fourth and fifth-order characteristic polyno-

mials, one can write the stability conditions in terms of these roots. For simplicity, we may write

)
%3]
I8l

2
aD2+bD2+c
or

_ ain2 1 3
aDS_aD3+bD3+c.

Then for stability, either
b+ \/b'2 - 4ac b - \/bg ~ 4ac
sz Doy D0

or

must hold.
The constraint imposed by the fact that Dy or D4 must be real is b2 > 4ac or b'? > 4a'c’.

For the special case where b2 = 4ac, as before, stability requires that

In summary, it appears that there exists at least a similarity in the method of modification of the

Hurwitz criterion for the fourth-, fifth-, and sixth-order characteristic polynomials. The manner in which
these modifications can be put to practical advantage is not at all obvious and is beyond the scope of
this dissertation. It was felt, however, that the modifications themselves were of sufficient interest

to present them at this point.
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CHAPTER 5

THE STABILITY OF THE LINEARIZED EQUATION SET
WiTH TIME-VARYING COEFFICIENTS

5.1 General Discussion

This chapter discusses in detail certain aspects of the analysis of coupled linear equations with
periodically varying coefficients.

The set of linearized equations discussed up to this point included as part of their coefficient
terms the term Hb, which had been defined earlier as the pitch-momentum bias and, until now, had been
constant. This bias results from the pitch reaction wheel momentum, and in practice, the instantaneous
momentum of this actively controlled wheel varies sinusoidally, or at least periodically, about some
average Ho in response to certain orbital disturbance torques that act upon the spacecraft.

Because the active pitch loop responds to this periodic torque disturbance, the stability of a
gimbaled-reaction-wheel-scanner class of spacecraft in the presence of a large periodically varying
pitch momentum bias becomes an issue of considerable importance.

A theorem commonly used in the analysis of variational equations with time periodic coefficients

is credited to Floquet (Reference 5).

5.2 Development of Floquet Theory

Let X = A(r) X be a system of first-order linear differential equations
where

X=(0),...,x); -o0o<r<oo

and A (r) denotes an 17 X n matrix whose elements are continuous periodic functions of period 7 such that

A(r+1)=A(2).
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Floquet asserts that a typical component of the solution vector for this system of first-order linear differen-

tial equations takes the form

Z rt
X, = 21 B (e,
=

where

P (1) = G, P(1), G constant.

A

The constant 7, is real or complex, and P(z) is a periodic function having a period of 7 seconds. The component

x, is the solution corresponding to the kth system state. A development that leads to this conclusion follows.

Theorem 1

A system of equations of the form

X=A0X, X=(x), ..., x,), -~o<r<oo,

where

A(t+1)=A@0)
has at least one solution not identically zero (Reference 6) of the form
X(t+7)=2X()

for all values of 7, where A #0 is a constant, not necessarily real. The term “‘at least” has been used in Theorem 1
because even if A were repeated # times, there would still be at least one solution of the form stated. Further,

define a state transition matrix ¢(¢, tO) as an n X n matrix with the properties that

(p([O)tO) = 1:
where ! is the identity matrix, and

$(t,09) = A(DD(2,20) -
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Having required that the state transition matrix satisfy the above relationships, it is possible to demonstrate

that

X = ¢(t,t0)X(t0) >

where X(?) is the state vector at time £, and X(#,) is the initial state vector at time ;.

Thus, from
X = A(N)X,

we obtain

d
2 (0@X(p) = AO [0t X ()]
but since X(IO) is a constant, it follows that

AWOD(11)X(tg) = AN #(1,1) X (zg) |

It also follows that

X(1)=o(1, to)x(fo)

is indeed a solution of
X=A()X.
Substituting the time ¢ + 7 for ¢ and setting 7, equal to ¢,

X(t +71)=¢(t + 1, HX(2).

From this expression, given the state of the system at time £, the system state can be found at time 7 + 7, where 7
is the periodicity of the periodically varying coefficients.

If this expression for X(¢ + 7) is equated to the one given in Theorem 1,
oz + 7, )X(1) = A X(2),
or

[p(r +7,0) - N IX(2) =0.
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Clearly, if X(¢) is to be nontrivial, then

lo(z +7,6) - A1 =0,

for all values of ¢, or, specifically

lp(r, 0) - N[ =0.

It is possible to analytically demonstrate that the A’s are invariant as a function of ¢ (References 6, 7, and 8).

If all A, (i=1,2,...,n) are distinct, there will be n independent solutions to the differential equation

X = A()X, thus verifying Theorem 1 for distinct A;- That is,

X(r+71)=AX(t), forA=N(i=1,2,...,n).

If only m values of A; are distinct (1 <m < n), then at least m independent solutions of X = A(t)X
exist. Once again, Theorem 1 is proved.

Let

where r; is constant, but not necessarily real. The quantity r, is defined as the characteristic exponent of the
system of first-order differential equations. The A; are defined as the characteristic factors or multipliers of
X = A(1)X.

Because of the ambiguity associated with the logarithm of a complex number, A, only the real part of r; is

uniquely determined.

Next define the column vector

£ ]
l—Cll-Pj(l)Crl Cl]
¥l
Czlpl(f)(’ / C2]
— _ rat
Xj(l‘) = . = P/-(f)(.’ J b
rit
C,”/-P].(t)e ! ij
L p— e -~

&0



where there is one column vector for each ?xl. forj=1,2,...,n,and m corresponds to the number of distinct

?xj. s.
The general solution which satisfies the first-order differential equation set under discussion

asserted by Floquet can be written:

r—” r.r
2 Cuf:'(’)e'
=1
f1 rt
L CyP(De’ n
i=1
X(1) = )X

i

Zc pwel
i=]

mii

1f the time (£ + 7) is substituted for 7 into X/.(I), where 7 is the periodicity of the periodically varying cocfficients,

1j
C2].
-t + T .
X/.(t +7)= P/.(t + T)("/( )
Lan/'
. T .
Since ¢/’ = 7\/., the column vector can be rewritten as
¢, . ]
1
C2i
rit
X!.(r t71)= P/.(r + T)?\jc /
mj
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From Theorem 1,

_ _ rit
x].(t +7)= ?ijj.(t) = 7\]1’/.(t)e J

c

mj

Accordingly, if X(t), as asserted by Floquet (Reference 6), is to be the general solution vector for

the set of first-order differential equations,
X=A(X,
and also is to satisfy the relationship
X(t +71)=AX(0),

then P].(t) and P].(t + 7), as they appear in the two vector expressions for X/.(z‘ + 1), must be equal for all values of
¢t. That is, P(t) must be periodic with period 7.

To demonstrate that Pl.(t) is periodic, write
1j

]
-r .l
P(0) : =e T X(0).

mj

Substituting ¢ + 7 for the time ¢,

1

j
Pa+r) | . =T OX ).

mj
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From Theorem 1,

Xt + 1) =3 X,(0),

and therefore

F Clj
CZj
-+t + T)
Plexny | =e A X ().
mj
But
T
i =
e 1/>\/.,
So that
_ - _ -
€y G
C,.
© R 2/
Pt +7) =TA,X,-(1) = P1)
ij Lcmj

We have now deduced that P,.(t) is periodic and that X = A()X has at least m, | < m <X n, independent

solutions of the form

_ N -
X
n
=X()y=X X!.(t).
j=1
x”?
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At this point, it should be noted that if the characteristic exponents are not distinct, then n - m of the independent
solutions will include functions that, instead of being simply exponential in nature, are products of exponentials
and polynomials in time. Indeed, the exponents will still be the characteristic exponents, and these will determine
the asymptotic behavior of the solution. System stability will be governed by the exponential portion of the
solution and more specifically by the sign associated with the real parts of the #;’s.
Theorem 2

From the form of the determined solution, the following conclusions can be drawn:

(1)  All solutions X(r) of X = A(r)X approach zero as 7 approaches infinity if and only if Ni<1(@=1,
... m)or Re(r;) <O0.

(2) All solutions are bounded as ¢ approaches infinity if and only if |>‘il <1@E=1,...m)or
Re(r;) < 0. Inaddition, for those A; whose P\I.I =1, it is required that the multiplicity of this characteristic
value equal the degeneracy of the matrix [¢(r, 0) - A, /]

(3)  The solution is periodic of period 7 if and only if there is at least one A, such that A; =+ 1, all other
NI<T.

(4)  The solution is unstable if any [N,/ > 1 oriRe(r) > 0(=1,...,m).

5.3 Deriving Physical Meaning From Floquet Theory
The general solution has added physical significance when an element of a typical state solution
is detailed in the following manner.

Recall that A; = eli”, A; not necessarily real. Therefore,

rr=1n A =1In Ay + (0 + 2nk) for k = 0, £1, £2, ...,

where 6 is the phase angle associated with a complex A

) - Im (A;)
6 = tan Re (’\1‘) .

Recall further that P;(¢) is periodic of period 7 and can therefore be expressed as a Fourier series

of the form

_g a9 = 2 . 2
Pt —)? +Z (An cos —;—nt + B, sm—rnt> .
. n=1 ;
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Forming the ith element of the Ith system state solution, one can write

In Al 6 . onk @
LE A CAE-LLY TP
X0=Cyle 7 e(T 7 ){—2-+ E (An cosE;-Tnt+Bn sinz—:nt)}.
n=1

Because the infinite series representation of P;(t) allows for the presence of any or all of the fre-
quency components that are multiples of 27/7, where 7 is the period of the time varying coefficient, it
is only necessary to consider k = 0.

Consider the special case for which A;=—a; where a; is greater than zero and real. One possible

form of the solution associated with the A; described is

L= In Ajs

and
_bi + 37
ri_-;— +jz
where
k=0,
bi:real,
bi>0forai>1,
bl.:Oforaizl,
and

bl.<0foraj<1.

Substituting, we obtain

b;

LT . 7T
1 ~j=t +j=1t -1
X”(t):é[e T te ’]C“Pi(t)er .
or

b,
a X Ziy
0 . T
X“(t):cosgtcug—z + A, cosz—rnnt+ B, smg—rnntle .

n=1 .
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From this example, it is clear that although the magnitude of 2; determines the stability associ-
ated with the ith element of the Ith state solution X ”(t), it does not affect the frequency content of
the solution. Furthermore, if the dominant A; has the form A; = -a;, where a; is real and positive, then
the dominant frequency observed in the solution is likely to be half that associated with the frequency
of the periodically varying coefficients rather than 27/7 itself. Specifically, the solution associated
with the A; = -1 case will be a periodic function that is expandable into a Fourier series whose basic
frequency is half that of the driven coefficients. Only the odd harmonics will be present.

Another A; for which the solution is clearly periodic is A; = +1. In this case, the periodicity of

the element of the state solution is the same as that of the driven coefficients.

X (t) = C Py()e" ",
where r; = 0 + jO for /\1. = +1, and Pi(t) is of period r.

Finally, consider the most general case, that of

Aj=a+]jB, with a and Breal .

Clearly, if the solution is to be even possibly periodic, the real part of r; must be zero.

That is,

\/a2+,82:1.

Also, both the basic frequency associated with the imaginary part of r; and the frequency associated
with the driven coefficients must be rational numbers. Even if these two unlikely requirements are
satisfied, it is possible that P (t) must be represented b_y an infinite series whose basic frequency is
that of the driven coefficients..

Because of the multiplicative relationship between P,(t) and el Im (It the associated sum and
difference frequencies must be commensurate with one another if the state solution is to be periodic.
When P;(t) must be expressed as an infinite series, it might be necessary to choose a very low basic
frequency, one having a very long period, in order that all sum and difference frequencies associated

with the infinite series will be commensurate.

As a result, it is evident that at least from a practical engineering point of view, the most common
cases whose solutions might be referred to as being periodic in nature are only those that have at

least one /\1- = *1.
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In summary, since the A; are the eigenvalues of the state transition matrix ¢t + 7, t) or of (7, 0),

the analytic stability problem becomes one of developing this matrix for the state equations that in-
clude time-varying coefficients.

In pursuing this problem, it was hoped that the state transition matrix ¢(z, 0) could have been
determined with some generality (that is without having to resort to numerical techniques). However,
after a considerable amount of work, the attempt proved to be fruitless.

In retrospect, one might have expected that since the ¢(r, 0) matrix in reality is the solution for
all time once given the initial state of the system, finding this matrix in general would mean that it
would be possible to find the solution in general for a coupled system with time-varying coefficients.

With this in mind, the problem was pursued numerically in order that the Floquet technique might
be applied to a complex set of equations that describe a particular example of a gimbaled-reaction-

wheel-scanner class of spacecraft.

5.4 Application of Floquet Theory to

Momentum-Bias-Caused Time Variations

A technique both convenient to apply and numerically accurate in spite of the approximations made
was one in which the sinusoidally varying H and the cosinusoidally varying Flb terms were replaced
by square waves respectively 90° out of phase. In this manner, the variational equations with periodic
coefficients were converted to a set of variational equations having piecewise constant coefficients.
This made it possible to define the state transition matrix over one period as the product of four piece-

wise constant matrices.

a0, 0 - 922 30) 6 (32 2) p(Z ) ¢ (5% ).

where

T :-Uﬂ = the periodicity of the driven coefficients.

-

Each term in the product can be written:

b
[ AdA\
2 - eA(b - a)

&(b,a) = e
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A being a constant matrix.

A digital computer simulation verified that the square-wave approximation introduced no apprecia-
ble error as long as use was made of the fact that the magnitude of the equivalent square-wave funda-
mental component is 4/ times the amplitude of the sine and cosine waves being approximated.

The linearized equations governing this system might be presented as follows:

y = KHy, v, 0, ¢)
b= f(Hy, By .y, b, )

b = f(Hy, .0, y.%)

0 = fa, 6)
¢ = e 6,0
a=£(8,0,0,¢aq)

Recall that when the general set of equations was linearized in Chapter 3, the rotor angular veloc-
ity was written dR =Hy + a, where q, from that point on, was defined to be a variational rotor speed,
and Hy was defined to be constant.

If the system were subjected to a sinusoidal pitch disturbance torque such as one that might result
from a residual spacecraft magnetic moment, it would be possible to evaluate a and « from the pitch,
rotor, and error signal set of equations. The resulting instantaneous wheel speed would be a phase-
shifted sinusoid and the quantity /5(22)a would represent a variational value of momentum about the
heretofore constant momentum bias H,. As aresult, the bias and its derivative as they appear in the
roll, yaw, and gimbal equation set can be redefined to reflect the variation resulting from a sinusoidal
pitch disturbance torque. If the disturbance were periodic but not sinusoidal, the variation in momen-

tum could be expressed as a Fourier series, and using superposition, the solution would proceed ex-

actly as above.
If the performance of this class of spacecraft is to be acceptable in the presence of pitch axis

disturbance torques, the active pitch loop must be tightly controlled. Thus, the disturbance torques
must be countered by variations of the reaction wheel speed about its bias rather than by variations of
the spacecraft about the pitch axis. This being the case, it is reasonable to consider the variations of
all state variables small with the exception of a. The term Hb can be redefined to account for this var-

iation, and the analysis can be continued using the altered set of variational equations.
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Order-of-magnitude experience gained in Chapter 4 allows the roll, yaw, and gimbal equation set
to be rewritten in the following form:
Ty, —HbSBq's - CBHsz: + Bg)'/ - CBRQY H, b + HySBQ. + (kg - Hyg)y = 0. 5.1
- .
. (1-p)f, Hp|. SPH, ofL- p) Qo CBQH, SBHy|
Ty —¢+ 90[1+ " _|+E - - v+ 495 g b + al I y=0.(5.2)
[ H CBH Q.H CBH, Q.SBH
a3 b. 07b e _ [ e v e’
Ty, —1/1+LQO(p—1—a)— l:lgb i y+|: T Q5(p a):lt// |: i + T y=0. (5.3)
where
1,11 = al,
1,(22) = pl,
and
I@33)=1.

Furthermore, for the purpose of this discussion, it is convenient to define Hb as

and

- 2
Hy=Hy+ dHS—;-t

Hy :?ﬂdHC&t, HO and dH constant.
a T

7 is the periodicity of the disturbance torque.

The phasing of a with respect to the disturbance that produced it is unimportant, since the equa-

tion set under investigation is homogeneous. Any roll and/or yaw disturbances will be treated sepa-

rately in Chapter 6, which deals specifically with the response to disturbance torques. The purpose of

the present chapter is only to investigate potential stability problems arising from the Yime variation of

the coefficients Hj, and Hb. A periodic pitch disturbance produces no steady-state response in the roll,

yaw, or gimbal axes.

The details associated with the application of the Floquet criterion to this modified set of varia-

tional equations follow.
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A convenient starting point for developing a mechanism by which the state transition matrix can
numerically be evaluated for the generalized gimbaled-reaction-wheel-scanner class of spacecraft was

to rewrite the roll, yaw, and gimbal equation set in its state space form.

Define the vector X = (xl, Xy oo ,x5) as follows.
j
xl = ¢
x2 = ¢
x3 =9 F
X, =y
X =y
5 S
where
X =4X,

and 4 includes the periodically varying H, terms.

Substituting these quantities into the roll, yaw, and gimbal equation set, [Equations (5.1}, (5.2), and (5.3)],
Equation (5.4) can be written directly.

Each of the terms that form the elements of the 4 matrix is constant except H, and Hb' Figure 5.1 illus-
trates the approximation that was used to describe these terms.

In each of the regions over which H, and Hb are simultaneously constant, the state transition matrix for the
time-varving coefficient case, ¢(z + 7/4, ), can be replaced by the state transition matrix for the constant coeffi-
cient case, ¢[(z + 7/4) - #] , where 7 is the period of the periodically varying coefficients, and the resulting matrix
is

(t+7/4)

Ad\
pl(t+7/4)-1] =e

5.5 Numerical Example

For a numerical example utilizing Floquet Theory, consider the stability of the Delta-Packaged Attitude-

Control System (Delta-PAC) when acted upon by an external periodic pitch disturbance torque.
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The mission of this Delta-PAC spacecraft was to experimentally test the concept of a gimbaled-reaction-
wheel-scanner controlled vehicle. The spacecraft was designed and fabricated at Goddard Space Flight Center,
Greenbelt, Md., and was launched successfully on August 9, 1969.

The Delta-PAC spacecraft has a gimbal axis angle § of zero (i.e., the gimbal axis is coincident with the
spacecraft positive roll axis). In addition, the inertia of the spacecraft roll axis equals that of the pitch axis so

that a = p. These assumptions simplify the system 4 matrix and the resulting matrix equation is shown below.

—
0 1 0 0 0
QH, Q4 Q, H
af 1 0"y 0''p )
490<a 1>+ v 0 o — 0
) QH, HQ - k, Hy
X = B 0 — B B, 0
g g g
2 _ 3 2
_QOHb a - i (kg QOHb)Hb ﬂ_ Hy QOHb
0t -q, & 0BTh b ob
IBg I IBg I IBg I
0 0 0 1 0
| _

(5.5)
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In order that it be possible to evaluate the state transition matrix for various values of the system parameters
as well as for various values of dH and , it was convenient to develop a digital computer program. This program,
given the system parameters, evaluates the elements of the state transition matrix ¢(r, 0) and then evaluates its
eigenvalues for various values of dH and 7.

Clearly, for the case of dH = 0, the solution obtained by means of Floquet theory must be identical to that
obtained if one were to apply classical linear-equation theory to the constant coefficient system A matrix.

Numerical values associated with the nominal set of Delta-PAC parameters follow:
Bg = 0.5 ft-Ib/rad-sec™}

Hy=~ 2 ft-lb-sec .
a =8
p =8
I =200 ft-1b-sec?
QO= 1073 rad/sec
K,=0.8X 107 ftlb/rad
System characteristic values derived from classical linear theory are shown below. The eigenvalues are

denoted by W,, where W, may be complex.

- 4.51636 X 1072
W = -0.141329X 107 £/1.9687 X 103
- 0.768568 X 104 +1.1053 X 10

The general solution for the kth system state can be written by partial fraction expansion in the form

Ay, S(1.9687 X 1073) ¢+ B, C(1.9687 X 1073)s |

2 3
-4.51636 X 107t -0.141329 X 10™¢
X =Cpe +te {

k1

. 4 ; -
4o 0768568 X 107 [Akz $(1.1053 X 1073)¢ + B, ,C(1.1053 X 1073)¢ .

Solving the equivalent problem by means of Floquet theory requires the assumption of a nonzero
periodicity even though dH has been assumed to be zero. This assumption of a nonzero period is required,

because for the piecewise constant coefficient case,

93



;
/ Adt
0 AT,

b7 - 0)= 9(1,0) = e -

The period, in this case, is fictitious and is of no consequence since it is normalized out in the evaluation of the
characteristic exponents.
Two arbitrary periods were chosen, and the resulting characteristic multipliers, the eigenvalues of the state

transition matrix, are discussed below.

(1) FordH=0,

wp = =1.0x 10 rad/sec,
T
-k
A ={ 0.616988 L+ 37.9°\= eigenvalues of ¢(7,0) .
0411479 L £11.2°
Ind; Re(lnd) Im(ln},)
r., = = +7
i ]
T T T
and SRR
3,.319° .
r =J -0.0768 X 107 £j Only the primary value of Im(1ln Ap)
11.2° need be considered.

~0.141329 X 107 £/ =

5
rit
Xk=Xe! Pkf([)’
=1
where P (¢) is periodic having a period 7.
Before proceeding further with the numerical examples, it is necessary to explain the asterisk as it appears
in the A and the r equations.

As the r;’s will in fact be identical to the system characteristic values found by classical methods, it is

possible to calculate the particular A; that would correspond to a given r;. Taking
W, = -451636X 102 =r,

B In >‘i_ Re(In 7\"). Im(n )

. T
i T T - ’
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or
-4.51636 X 1027 =1n[A] .
For
i-" = 1.0X 1073 rad/sec,
In[\l= 27X 103(-4.51636 X 10'2)
or

A, =~ 0.575X 107122,

1

As a result of this exercise, two facts immediately become evident. First, it is not possible to extract
accurately a root of this magnitude by numerical methods from a fifth-order polynomial. Second, the accuracy
of the remaining roots are essentially unaltered because of the many orders of magnitude that exist between this
root and the other four A/s.

Numerical methods have given results in the order of 10710 for the A; in question, clearly a great deal
smaller than either A = 0.616988 £ + 37.9° or A = 0.411479 L * 11.2°.

Because of the nature of the system under study, one time constant (the one associated with the gimbal
itself) will always be very much shorter than the others in the system.

Throughout the presentation that follows, therefore, one of the five roots will be omitted in light of this

discussion.

Continuing, then, with

r.t
Xe= L e B0,

which is the general solution for the system state &, and expanding, we obtain

L[ 319, 3om,
Xp = e P (1) + e T3 X107 | TITBO T p 1y TR0 T p )

a +/_11.2 T, _/_11.2 ﬂr
-0.768 X 1077¢ 180 7 180 7
+e e Py te P -

Because X; must be a real function of time, each of the bracketed terms must also be real. Because the
exponentials themselves give rise to complex quantities, the two products that appear within each bracket must

be the complex conjugate of one another.



' In the numerical example given, the frequency associated with ¢ G7-9/180@1 js 0§ 1056 X 1073 rad/sec,
whereas that associated with e~/ (11.2/180)m/N1 i¢ 0 0306 X 1073 rad/sec.
Recalling that P, (¢) is a periodic function with 2n/r as its fundamental frequency of oscillation, then it is

possible to represent the bracketed terms as

!
E Cmisarnt+DrniC8mt:|

m=1

where / may or may not be finite. The 8, ’s are the sum and difference frequencies resulting from the product of

the periodic exponentials and the various harmonics of the periodic functions £, (¢).

A shortcoming that immediately becomes apparent when this method of comparison is attempted is that
without previous knowledge of the solution, it is not possible to determine which of the C,_ s and/or D, .’s will be
nonzero. However, Floquet’s intent was only to demonstrate asymptotic stability or instability. In the numerical
examples that follow, an attempt has been made to extract from the set of characteristic multipliers stability infor-

mation and information concerning the frequency and damping ratio of each of the solution modes.

In the numerical example under discussion, previous knowledge of the solution permits writing the expan-

sion oka as follows:

-4 - -
x, = e P @)+ 00768 X 1077z { C Sy + 0.1056 x 10 3+ D 1xC(wq + 0.1056 x 10 Syt ,
4 ¢=0.141329 X 1073 :c 1218wy — 0.0306 x 1073t + D5, C(2w, ~ 0.0306 x 1073)t l :

for P, (¢) constant.

The constant C,;, represents the first nonzero sine coefficient associated with the first bracketed term for

the kth system state, and C12k

term for the kth system state. The D . 's are defined in a similar manner.

represents the first nonzero sine coefficient associated with the second bracketed

Clearly, the Floquet characteristic multipliers produced both the correct frequencies and their associated

damping factors.

(2) Next, fordH =0,

=22%103 rad/sec,
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A =J 066788 L +37.8°
0.8029 £ +179.13°

and

r ={-0.141329 x 107+ L2

~0.076856 X 1073 % 1197'&

s |+ 37.8 T ].37.8 T,
— e -0.141329 X 10~ 180 T 7180 T
x,=e P, te e P () t+e Py (1)

al 4/ 179.13 « _],179.13 T
-0. - 180 T 180 71
+e 0.76856 X 10" "¢ e Pk4 (t) te PkS(t)

The frequency associated with e™/ 37-8/180) (N j5 9 23 X 1073 rad/sec, and that associated with

et (179.13/180) (M) ¢ 5 1 105 X 1073 rad/sec.

Finally,
-3 _ _
Xp = P (f) + 0141329 X 10 f[c“k S(wg - 0.23X 1073)1+ Dy, Cwy - 0.23X 10 3)[}

-4
+¢70-76856 X 10 [[Cuk S(wq = 1.105 X 1073) 1+ D, C(wy - 1.105 X 1073)¢ }

for P, () constant.

Once again, previous knowledge was required to determine the specific Bm’s required.

Since the applicability of the Floquet approach has been demonstrated, numerical establishment
of stability thresholds with the following digital computer search routine is now possible.

For a set of parameters representing a stable spacecraft configuration, the variational momentum
dH for a given frequency 27/ is increased from zero until the magnitude of the largest \/\1-\ equals one.
This condition defines the threshold of instability in the Floquet sense. Floquet states that a system
whose state transition matrix has at least one root of magnitude one has at least one term in its gen-
eralized time solution whose damping factor has been reduced to zero. Whether or not the steady-

state time solution that results at this threshold is periodic depends on those conditions discussed

in Section (5.3).
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To appreciate better the physical interpretations that can be obtained from a Floquet analysis,
the numerical example that was begun with dH = 0 is continued with dH > 0. In exploratory numerical
work, the maximum effect of the momentum variation was obtained when the perturbation frequency was
twice the frequency of the least damped root of the unperturbed system. For this reason, 27/7 = 2.2 x
1073 rad/sec was used as a driving frequency in the following example. The state transition matrix
eigenvalues and the associated time solution is given for each of the three values of variational mo-

mentum dH considered.

(8) FordH = 0.1 ft-Ib-sec,

-0.88
-0.72
0.527 + j0.41

and

-0.128 ¢ jm

Irr =
-0.33 + jm

37.7
-0.4 + ]180

w
Only the principal values of 1n A ; are considered.
Xp =€ Pp(t) + 01 % 1075 {CllkS(an +£0.23 x 107%)t + D, Clawg + 0.23 x 10'3)t'
. le-0.0448 x 108, -0.11555 x 10'3c} ‘kas("‘”o s %)t + D, Cliag t‘_"gﬂ)tl .

It is reasonable to believe that because dH is small in comparison with Hg, the frequency con-
tent of the perturbed solution should be very close to that of the unperturbed solution.

Therefore, knowledge of the problem indicates that

-3
Xp =€ Py (t) +e 01 x 107 |c11kS(w0 ~0.23 x 1073)¢ + D, Clw — 0.23 x 10‘3)t]
-3 Wq w
-0.0 0 -— 0
+70.0448 x 10 ¢ |C12kS(co0 -3 it + D5, Clwg —‘?)t:

-0.11555 x 1073¢ C.. 8§ “o D.. C “o
+e 1855@p =5 + D 15, Clwg - 50t
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The general solution of this perturbed case is similar to that of the unperturbed case except that
_the exponential assbciated with the least damped resonance has now broken into two parts, one more
lightly damped and one more heavily damped than that of the unperturbed solution.
(4) For dH = 0.2 ft-lb-sec,

-0.9715
A=
~0.657
L ~0.5283 ¢ j0.412

and

rr =

-0.0288 t jm

-0.42 ¢ jm

. 37.7
\ 0.4 +j 180

Making use of previous information,

-3
Xp =€ P (t) 4014 107 {Cl1ks(‘*’0 -0.23 x 103t + D, Clwg —0.23 x 10'3)t|

-0.01008 x 1073 | o 20 . D Clon - 20
+e 1265(@g ‘2—) P12k ‘“0"?)

+e0.147x 10'3f{cl3kS(w0 —-%)L + D5, Cwg - Q—;—O)t} .

As in the previous example, the unperturbed dominant time constant term has been split into two
terms. One is even more lightly damped, and the other is even more heavily damped than those in
Example 3.

(5) Finally, for dH = 0.3 ft-lb-sec,

-1.07
A=
-0.5897
—0.5306 £j0.4157

and

+0.0659 tjn

—0.528 tjn

.37.7
—0.4 +j 18077
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The general solution is written,

Xp e Py (0) + e 018 x 1070 {cukS(wo ~0.28 x 10°3)t + D |, Clw ~ 0.23 10'3)t}
. £0.02276 x 1073 {kas(“)o _ ?)t + D5, Clewg - %Q)t;
L e0.185 x 1073t ‘CISkS(“)O - %g)t +D 5, Clwg - %)t } )
Once again, the exponential associated with the dominant unperturbed system root has split. In
this case, although one term has become more heavily damped than its counterpart in Example 4, the

exponent associated with the other has gone through zero and become positive. As aresult, for

wg = 2.2 x 1073 rad/sec and dH = 0.3 ft-lb-sec, x; for k= 1,2, ...., 5 is unstable.

Given the proper set of initial conditions, the initial transient of the unstable case exemplified by
Case 5 is more heavily damped than any of the stable cases. Also, for wg = 27/7= 2.2 x 1073 rad/sec,
the secondary system resonance is relatively unaffected by the small amplitude time variation of
the coefficients. Finally in the neighborhood of the Floquet threshold, either above or below it, the
dominant frequency observed in the time solution will be wq/2 as long as the threshold eigenvalue
remains A = — 1. In the neighborhood of this threshold, the unperturbed system root associated with

this particular eigenvalue is the least damped system root.

A linearized digital computer simulation program was written to illustrate more clearly the phe-
nomena under discussion. The time solutions associated with Cases 1 through 5 generated by this

simulation are shown in Figures 5.2 and 5.3.

After the Floquet threshold of instability was established for wqg = 27/7 = 2.2 x 1073 rad/sec,
where wg is the frequency of the time-varying coefficient, the numeric search was continued by per-
turbing wq /2 both above and below the dominant unperturbed system resonance w ;. As |w,;— (wy/2)]
was allowed to increase from zero, it was found that the dH required to cause the system to become

unstable was increased from that found when wy/2 = o Furthermore, as long as w,/2 did not ap-

nl
proach too closely w . the secondary resonance frequency of the unperturbed system, the eigenvalue
associated with the Floquet threshold remained A = — 1. This factor indicated that the dominant fre-
quency of the time solution, in the neighborhood of the Floquet threshold (A = — 1), was half that of

the driving frequency of the periodic coefficients. Specifically, the time solution corresponding to the
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threshold value of dH was periodic with basic frequency wg/2. This phenomena can be observed in
Figure 5.4,

As w(/2 approached © a2 the eigenvalue corresponding to the Floquet threshold was now complex
and the corresponding time solution was no longer periodic. Corresponding time solutions are shown
in Figure 5.5.

Finally, in the vicinity of wg/2 =Wy, if dH is increased past the first Floquet threshold, a sec-
ond threshold is found for which one of the A; =— 1. This detail will be discussed in Section (5.7).

The results of the numerical study under discussion are presented in Figure 5.6. In this graph,
the value of dH necessary to exceed the Floquet stability threshold has been plotted as a function of
wp/2, one half the applied torque disturbance frequency. The points denoted with a *‘A’’ corre-
spond to eigenvalues of minus one, and those marked with a ‘‘0’’ correspond to complex eigenvalues
whose magnitude is equal to one.

It is clear that dH has its minimum value at wp/2 = @y and that the secondary minimum associ-
ated with the complex eigenvalues occurs in the interval between w;/2 = 0, and wy/2 = .

A linearized simulation was used to validate the results obtained through the use of Floquet
theory so that the mathematics of Floguet would not be obscured by the nonlinearities of the system.

If an instability were observed for a particular set of spacecraft parameters in using the linear-
ized system of equations, then the nonlinear equations would also exhibit this instability, at least

for small angle spacecraft variations.

5.6 Summary of Results

As a result of the numerical study, it was possible to deduce certain general conclusions concern-
ing the effect of a periodic pitch disturbance torque upon the stability of this class of system. From
the general discussion that preceded the numerical example, one can recall that when the threshold
eigenvalue was A = - 1, the dominant frequency of the time solution will be half the driving frequency
of the periodic coefficients. Accordingly, if the threshold eigenvalues for driving frequencies in the
vicinity of twice the dominant resonant-peak of the unperturbed system are in fact A = — 1, it should not
be surprising that the most critical frequency, that frequency associated with the smallest value of dH
that will drive the system unstable, was exactly twice that of the dominant damped frequency of the un-

perturbed system.
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Moreover, the class of systems studied comprises characteristically lightly damped systems. In-
tuitively, one would expect that if it were possible to make the system unstable by means of a periodic
disturbance in pitch, the time solution would show the least damped resonant frequency of the unper-
turbed system as its dominant frequency component. But this suggests that if the eigenvalue associ-
ated with the most easily excitable instability is A = —~ 1, the associated driving frequency would be
wg/R = wp,y.

It would be reasonable to assume that the general nature of the dH versus wg/2 curve does not
change appreciably as the system parameters are perturbed about their nominal values. Thus, the min-
imum value of dH and its associated og/2 was found for various sets of system parameters.

Let the ordered pair (dH, »,/2) be that pair of values corresponding to the lowest minimum of the
dH versus w(/2 curve as illustrated by Figure 5.6. Because it was expected that the threshold eigen-
value corresponding to this minimum would be A; = — 1, the wy/2 in the ordered pair must exactly equal
the frequency associated with the most lightly damped root of the unperturbed system. This frequency,
w1, was found by setting dH = 0. The critical value of dH was found numerically by increasing dH

from zero until the first A; = -~ 1. It was verified that all other |A;] < 1.
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Table 5.1—-Parameter variation study.

Nominal parameter dH dH
} . L A
Case no set except that (ft-1b-sec) Largest |2 (ft-1b-sec) argest A
I Hy = -1.575 ft-lb-sec 0.2 -0.989 0.3 -1.115
I Hy = —2.48 ft-1b-sec 2 —- .966 .3 —1.04
I k, - .8x 1072 ft-1b/rad .025 — .997 .075 -1.017
\Y k= 8x 107* ft-1b/rad .3 — .9498 4 -1.05
\Y B, = .25 ft-Ib-sec/rad 1 — .987 2 -~1.08
VI B‘g = 1.0 ft-1b-sec/rad A4 — .9566 .5 -1.05
VII I, - 190 ft-Ib-sec®
a-p =92 2 — .969 3 ~1.066
VIII I, - 190 ft-lb-sec®
a-p=1786 2 — .9756 3 -1.07
X I, - 230 ft-1b-sec”
a-p="1786 .2 - .97 .3 -1.07
X I, - 230 ft-lb-sec”
a=p=92 2 - .967 .3 —-1.067

This numerical search was performed for 10 sets of parameters. The parameter sets and the

results are shown in Table 5.1. As might have been expected, those cases associated with the high-

est value of effective damping required the largest dH to make the system unstable, and those associ-

ated with the lowest value of effective damping required the smallest dH. The linear simulation was

used to substantiate the threshold values corresponding to the two extreme cases, Case III and Case

VI, and the resulting time solutions are shown in Figures 5.7 and 5.8.

In the description of the method for creating the state transition matrix ¢ (r, 0), it had been

stated that the sinusoidally varying component of pitch-momentum bias variation and the cosinusoid-

ally varying H p term would be approximated by quadrature square waves. Thus, each of the time solu-
tions considered until now was obtained with square-wave disturbances. To better appreciate the valid-
ity of this approximation, the same set of runs shown in Figures 5.7 and 5.8 were repeated using
sinusoidal disturbance torques. These time solutions are shown in Figures 5.9 and 5.10. The two

sets of runs exhibit very similar solutions.
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5.7 An Attempt at a Generalized Floquet Approach
An attempt to handle the Floquet problem in a more general manner is discussed in this section.
Although this approach did not result in the analytic solution sought, it is believed that with some
additional work, the general analytic solution of the problem type considered here could be found.
The systems studied rely to a large degree on gravity-gradient torques for control purposes.
These systems are lightly damped, and their dominant frequency is close to orbit rate. Because of
these characteristics, it would be expected that the general nature of the dH versus wg/2 curve

shown in Figure 5.6 would be applicable to most practical systems of this type, at least in the neigh-

borhood of wy/2 = @ Practical systems are defined as those systems composed of realizable sets

nl
of parameters. In the neighborhood of wy/2 = w  ,, the dH that is required to make the system unstable
is small with respect to the bias itself. Hence, once again it would be reasonable to assume that

A = — 1 throughout this neighborhood.

Accordingly, at the stability-instability transition, at least for driving frequencies in the neigh-
borhood of twice the dominant unperturbed system resonance Wy the steady-state time solution will
be purely periodic and will have as its basic frequency w0/2, one-half the frequency of the driven co-
efficients. If this were true, the solution for this class of system could be assumed to be a Fourier
series whose basic frequency is w0/2. In this manner, one could determine analytically those con-
straints imposed upon the general set of parameters for the solution to be periodic. The goal, of
course, is to convert the numerical Floquet problem into an analytic one.

The suggested procedure will be demonstrated through the use of a quasi-characteristic equation

that will be developed for the time-varying system. The assumed solution was

00

X= ) {A,m Cuct + B, St

n=1

where w = w0/2 and w is the frequency of driven coefficients. The roots of the unperturbed fifth-order
system will be composed of a complex pair associated with the dominant system resonance plus a real
negative exponential associated with the gimbal. The complex pair associated with the system reso-
nance will be lightly damped and will have a frequency near orbit rate, whereas the real negative root
associated with the gimbal will be a heavily damped root. The remaining two roots will probably be
associated with a secondary resonance, more heavily damped than the primary resonance.

If the system parameters are chosen so that a pure oscillation will be sustained in the neighbor-

hood of only the dominant resonance for a given value of dH, then two of the solutions of the yet-to-be-
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developed quasi-characteristic polynomial in w must be real and positive. All other solutions will be
either complex or negative. A complex « indicates that one term in the actual time solution is a
damped oscillation, and a purely imaginary root will indicate that one term in the time solution is a
sample exponential. In the limit, a pair of repeated positive roots in the w polynomial for a given set of
system parameters and an associated value of dH indicates those constraints dictated by the lowest min-
imum of the dH versus w0/2 curve. This threshold is the one sought analytically. Finally, if the system
parameters together with a particular value of dH can sustain pure oscillations in the neighborhood of
both the dominant and the secondary system resonances, then o will have four real positive solutions.
If two of the four real positive roots are repeated, we have found those constraints associated
with the secondary minimum. But this threshold is of questionable value because it probably lies out-
side the neighborhood for which our original assumptions are valid. It should be emphasized that the
applied pitch torque disturbance must have a frequency equal 10 wy = 2w rad/sec and an amplitude
equal to dH to realize any of the oscillatory conditions described.
Time solutions not periodic in nature, such as those cases associated with the “‘o’’ points of

Figure 5.6, do not become evident through the use of this approach. To solve these cases, an infinite

set of Fourier series, rather than a single Fourier series must be assumed.

This section discusses a possible approach to reduce these concepts to practice. For reasons of
simplicity of presentation, a special spacecraft configuration has been chosen. This configuration
was the subclass of gimbaled-reaction-wheel-scanner spacecraft for which ¢ = p and 8 - 0. These
conditions mean that roll inertia is equal to pitch inertia and the gimbal axis is located along the
positive roll axis. Clearly, the general case can be treated simply by beginning with the complete

system A matrix shown in Equation (5.4) rather than the modified matrix shown in Equation (5.5).

X - AX,
where A is defined in Equation (5.5). Replace Hb by Hy + dH Swt, Hb by wodH Cmot, and le) by
HE + 2H ) dH Swt + dH?8%w .

Assume
B T
[Aln Cnot + Bln Snwtl

M:

=]
Il
—

™M:

{Asn Cnot + B5n Sn(ut]

=]
i
-
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and

where o = m0/2.

> lntln Chot - nwd Snmtl

n=1

{an5n Cnot - "“’Asn Snwt’

—

.

After substitution and separation of terms, the resulting matrix representation of the set of first-

order differential equations may be expressed as

- !
104

=]
LM

i 0 1
Q.H
glp “00
<490 a + al >
B 0
8
2
- QoHE o
B J O
| 0 0
0 0
0 0
0
+ dH® 8%t
- QO
B I 0
-4
| o 0
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0 0 0 0 0
& 0 & 1 0 B oo “I
al al al E {Aln Cnot + Bln Snmt‘
Q Q n=1 *
0 0 1
+ dH Swat e 0 — i 0
0
Bé’ Bg Bg o0 .
- 2Q0H, -1 k, 200H,\ -2H, Q Z {Asn Cnot + By, Snwtl
B[ I \BJ " BJ BJ 7| L=t _
O 0 0 0 0 |
0 0 0 0 0| — o -
0 0 0 0 0 ‘Aln Cnwt + Bln Snwtl
n=1
+dH Cuw gyt 0 0 0 0 0
o o0 —2 o o > |A5n Cnot + By, Snwt}
I n=1 w = w0/2
_0 0 0 0 0 (5.6)

It is apparent from Section (5.3) that it is necessary to consider only odd values of n when
A =~ 1. Furthermore, if the function is to be periodic in w = w0/2, then the coefficients associated
with the n = 1 term must be nonzero.

Using common trigonometric identities for expanding products of commensurate sines and cosines

it is possible to rewrite the trigonometric products that appear in Equation (5.6) as

=53]

§ (20t) {Z [A1n © () + By Snot)] § =% (A s = Ay) St + 4 (B + Byg) Coot
n=1
n odd

+ % E EAk(n—Z) ~ Agniay) S10t —Byn_oy ~ By(ny2)) Cot | .

n=38
n odd

C @) D, [Agy C et) + By, S (nwt)]} _ (A, + Ayg) Cot + % (Byg — B ) Sot
\ n=1
n odd

115



oo

+ % Z [(Ak(n—z) + Ak(n+2)) Cnwt + (Bk(n—z) + Bk(n+2)) Snwt] ,
n=3
n odd

and

(o5

52 @u0{ D, [A4, C o) « By S (ot)] § =% {[Ayy = % (A4 + 4y9)] Cor
n=1
n odd

+ [Bri=% By~ Byg)| Sot + [Ayg~% (A + 44)] CBat + [Byg - % By - By S30t)

[e5]

+ ¥ Z{[Akn % (A(n_g) * Agenray)] Ot + [Bas = % Byamay * Binray) Snat} .
n=5
n odd

If all odd values of n were to be included, a matrix with an infinite number of rows and columns
would have to be dealt with. Therefore, the fact that the system is lightly damped and that it has a
dominant resonance near orbit rate must be used. Accordingly, the response of the practical system
will fall off rapidly to the right of this resonance so that even the third harmonic will be heavily
attenuated.

A Fourier analysis was performed upon one of the cases discussed earlier to illustrate this point.
Case III of the parameter variation study was chosen, and the Fourier coefficients associated with the
derivatives of each of the five system states are shown in Table 5.2. The computation of these coef-

ficients was performed within the linear digital simulation.

Table 5.2—Fourier coefficients associated with simulation Case III.

. Square-wave disturbance Sine wave disturbance
Derivative of system
state 2 2 2 2
\ An+Bn \/ An+Bn
n=1 n=3 n=1 n=3
é X, 0.139 0.145x 10 | 0.132 0.132 x 1073
é X, 191x10% | 593 x 106 | .18x 107 524 % 1078
y kg 305 244 x 1077 | 289 228 x 10°7°
Y %, 555 x 1071 .601 x 1073 527 x 1071 565 x 1073
i X, 417 x 1073 .101 x 107 .396 x 1073 .940 x 107°
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The numerical accuracy of the coefficients of the fifth harmonic and higher appeared to be ques-
tionable. Two reasons for this inaccuracy are the problem of integrating over exactly one cycle and
more importantly the problem of adjusting dH so that we are indeed at the threshold.

The Fouwrier coefficients were computed for both sine wave and square-wave disturbance torques
despite the fact that the sine wave disturbance is pertinent in this situation. The computation of the
square-wave coefficients was included to illustrate once again the close agreement of the square-
wave approximation with that of the sine wave disturbance.

From the above discussion, a fairly good approximation should result if all terms other than n =1
were set to zero and only those terms resulting from n = 1 were considered. If this is done, five rela-
tively involved equations can be written by making the appropriate trigonometric substitutions. More-
over, 10 relationships can be written by equating the right- and left-hand-side coefficients of Swt and

Cwt, respectively, for each of the five equations. Equation (5.6) is rewritten to simplify the

development.
_311— —A11_ o a, 0 0O 0] (" _A11ﬁ _Bu—“
By, Aoy agy 0 355 a5, 0 4oy Bgy
©Cwt|By, | ~wSwt|Ag, |=lag, 0 agg ag, O ﬁcw: g, | +sot| By, >
Byy A4 341 849 43 44 945 A4y Byy
LBBI_ -A51— L“0 0 0 agy 0_ L LASI_ L__le_'J
B o B N - .
0 0 0 0 0} ( A -%(A+ AL By, ~% (B ~B,y) B
o0 0 00 Agy - % (Agg + Agp) Bgy— % (Bgg — Byy)

+dH2 0 0 0 0 0 ﬁl/ZC(ut A31—-1/2(A33+A35) +l/ZS(1.)t 331—%(335—333) &

Cqp 0 cyg3 Cyy O Agy =% (Ayg + Ayg) Byy~ Y% (Bys - Byg)
L 0 0 0 0 0_ \. LA51 - % (Agg + Ass)_ L351 - % (Bgy - 353)_ J
— T ~ - — -
0 0 0 0 0 ( (Byy +Byg) (A1,-45) 1
b

21 0 bgg by, O (Bgy + Bgg) (Az1*A23)

+dH {bg, O bgg by, 0 % Cot | (Bgy+Bgg) | +%Sot |(Agy—A4y5) >

B N

a1 "42 Y43 Y44 Y45 (Byy + Byg) Ay, -~ Ayq)
0 0 0 0 0 \_(351 + 853)_ L(A51 =~ A53)_ J
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[(B15-B,)])

o 0 0 0 0 (Agq + 4g3) (Bgg - Bgy)

[0 0o o o o] ( [(4,,+4,)

rwdH[ O 0 0 0 0 <1/2Ccot (Agy + Agg) | +%Sot | (Bgg~Bg,) ?,(5.7)

0 0 (Agy +443) (Byg — Byy)

¢ 0 0 0 0] L | (Agy + Agg) | | Bgs = B5y)|

where d43 =-~2/Iand © = w0/2.

Finally, it is necessary to make the assumption that 4, >> A and By >> B 1 # 1. But this
assumption is no different from the decision to consider only the n = 1 related terms. From Equation
(5.7), the ten relationships can be written in matrix form directly as shown in Equation (5.8), and the

determinant of the 10 x 10 matrix yields the quasi-characteristic polynomial in w.

Clearly, had we retained the n = 2 terms as well, our final matrix would have been 20 x 20 rather
than 10 x 10, and so on.

Through the use of digital computer manipulations, it was possible to form the required quasi-
characteristic equation in « both numerically and algebraically. As might have been expected, one
must now deal with a fifth-order characteristic polynomial in w®. All odd terms of the tenth-order poly-
nomial are identically zero. After transforming the previously defined threshold criterion to the poly-
nomial in wz, the purely imaginary roots of the fifth-order polynomial in « will be real and negative, and
the repeated positive roots of the w polynomial will remain repeated and positive in the w? polynomial.

To determine the threshold of interest, that threshold corresponding to the detection of the ordered
pair (dH, wo/R) that defines the lowest minimum of the dH versus wq/2 curve, it is necessary to re-
solve the set of constraints for which the first pair of real, positive, repeated roots occur.

Although it is possible to solve this problem in a manner similar to that of the Routh technique,
the required algebraic manipulation became prohibitive and the attempt to solve for this threshold
analytically was abandoned. Additional work in this area, however, should prove to be profitable. To
pursue this problem further, the range of system parameters within which the stated approximations are
valid must be studied.

The potential usefulness of this approach is demonstrated by presenting the results of a numeri-

cal example.
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Figure 5.11—Fourier stability thresholds superimposed on Floquet stability
thresholds, dH versus wy/2. dH is in ft-lb-sec and is the amplitude of a sinus-
oidal disturbance. g is in orbit rates (one orbit rate is 1073 rad/sec) and is the

frequency of the driven coefficient.

Once again the parameters associated with the Delta-PAC spacecraft were used. These para-

meters were inserted into the 10 x 10 matrix leaving dH as the only undefined parameter. A computer

was used to form the quasi-characteristic equation, and the resulting polynomial in «

2 was factored

for various values of dH. As stated earlier, only values of dH for which positive real values of w re-

sult are of interest.

The numerical results of this approach have been superimposed upon the dH versus w0/2 curve

that resulted from the application of the Floquet criterion, and the new plot is shown in Figure 5.11.

the quasi-characteristic equation is excellent in the neighborhood of w ;.
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CHAPTER 6
PERFORMANCE

6.1 General Discussion

Chapter 5 discussed the effect of a pitch-axis disturbance torque on the stability of the passively
controlled spacecraft axes. For that problem, only the homogeneous roll, yaw, and gimbal equation
set was of interest, and it was unnecessary to consider the associated roll and yaw disturbance
torques.” This chapter considers system performance, which relates directly to the determination of
‘a disturbance model and to system steady-state as well as transient response to the derived disturb-
ance torques.

An investigation of system response necessarily uses a linear, time-invariant set of equations,
such as Equations (5.1), (5.2), and (5.3), where H, is constant and Hb = 0. Once the response charac-
teristics have been established, it must be verified that, within the parameter range of interest, the set
of equations used adequately describes the system under study.

Because the linearized, time-invariant, roll-yaw-gimbal equation set is completely decoupled from
the pitch, rotor, and error equation set, this chapter considers only the roll and yaw disturbance torque
components. It has been shown that in the passively controlled axes the momentum-bias variation re-
sulting from a pitch-axis disturbance causes a reduction of system damping but no steady state re-
sponse. Furthermore, the extent by which damping was reduced is dependent on both the magnitude
and the frequency content of the applied disturbance torque.

The performance criterion for a particular control system must be dependent on its actual input,
the uncontrolled disturbances acting on it, and the actual output requirements. It is clearly not suf-
ficient to require that the system step response to a position or a velocity input be well behaved, nor
is it necessary or sufficient to require that the system output track a given input signal faithfully.

If, for éxample, uncontrolled disturbances were present in the input, then perfect following of the
input would imply that the output would follow the uncontrolled signal perfectly as well. Conse-
quently, in the presence of the disturbance torques, a compromise must be made between faithiully

following the desired input and ignoring the uncontrolled disturbances.
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In the classical frequency-domain approach to feedback-control theory, a system is nominally con-
sidered to be sufficiently stable, or sufficiently well damped, if its closed-loop gain is less than two
at all frequencies (Reference 9). Nevertheless, if certain frequencies are present only to a negligible
extent in either the desired input or in the uncontrolled disturbances, it would not be objectionable if
the system were underdamped at those frequencies, for they would rarely be excited. The error trans-
fer function should be weighted, therefore, at each frequency according to its probability of occurrence
and then the total weighted error function should be minimized. A control system can then be de-
signed to take into account those requirements associated with a particular application.

The gimbaled-reaction-wheel-scanner spacecraft relies, to a large extent, upon gravity-gradient
torques for the purpose of control. Consequently, this class of system is lightly damped, and its dom-
inant frequency is near orbit rate. The vehicle in question is expected to maintain a single orientation
in space; therefore, its control input signal will be identically zero.

Moreover, the so-called uncontrolled disturbances result from specific environmental phenomena,
and their frequency content is well known. Phenomena that give rise to disturbance torques include
atmospheric drag, solar radiation pressure, and residual magnetic moments.

Because the magnitudes of these disturbances are heavily dependent on the altitude and inclina-
tion of the orbit as well as on the configuration of the vehicle, it is impossible to make any precise
statements concerning the magnitudes of these various torques. Qualitative statements regarding the
effect of orbit altitude upon these disturbances, however, can be made. Specifically, atmospheric drag
can be expected to be the dominant disturbance only at altitudes under a few hundred nautical miles.
Only at these low altitudes is the molecular density of space high enough to cause the atmospheric-
drag term to be large.

As the orbit altitude increases, the magnitude of this torque decreases sharply. For orbits at al-
titudes over 400 nautical miles, the residual magnetic disturbance torque clearly dominates over atmos-
pheric drag.

The magnetic disturbance torque is inversely proportional to the cube of the orbital distance from
the center of the earth, whereas the solar pressure disturbance is related to the distance of the ve-
hicle from the sun. As a consequence, the magnitude of the magnetic torque falls off as the orbital

altitude is increased, until for altitudes over 10 000 nautical miles, solar radiation becomes the domi-

nant disturbance.
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Two other forms of disturbances are the internally produced disturbances and orbital eccentricity.
- The internal spacecraft disturbances must be considered separately because they depend upon the
mission .of the particular spacecraft under study. The incorporation of an actively controlled pitch
loop allows for the inclusion of pitch internal torque-disturbance devices, such as actively driven
solar array panels and large data-collecting tape recorders. These devices must be mounted so that
their momentum or torque vectors are aligned along the spacecraft pitch axis if disturbance rejection
is to be most effective.

The internal torque-disturbance devices cause variations in the speed of the pitch reaction wheel
but do not change the total spacecraft momentum along the pitch axis. Because the active pitch loop
responds quickly (within a few minutes at most), the effect of high-frequency variations on the pas-
sively controlled roll and yaw axes is negligible. Most internal torque-disturbance devices are sym-
metrical about their rotating axes. If they are not, time-varying inertia terms will result in the roll-
yvaw plane equations. Driven solar panels fall into this category and are treated separately in
Chapter 7.

The major effect of orbital eccentricity is to cause a variation in the orbital velocity of the
spacecraft. This variation directly affects only the vehicle pitch rate, which is properly regulated by
the actively controlled pitch loop. Here again. the total spacecraft momentum is unchanged, and the
cffect upon the passively controlled roll-yaw plane is negligible. In addition to the periodic varia-
tion in orbital velocity, there is also an orbital period variation in the coefficients of the gravity-
gradient restoring torque terms. These variations are negligibly small, but they could be handled by
the techniques developed in Chapter 5. Consequently, internal torque disturbances and orbital ec-
centricity were not given further consideration.

The characteristics of the conical infrared attitude horizon scanner used in vehicles of this
class limit the spacecraft orbit altitude to between 400 and 800 nautical miles. Within this range of
operation, experience has shown that the residual magnetic disturbance torques, both those resulting
from the spacecraft alone and those resulting from current paths on driven solar panels, are the dom-
inant disturbances. It is with this in mind that the discussion is continued. For any practical ap-
plication, the potential user must demonstrate that for his problem the magnetic disturbance is in fact
the dominant disturbance if he is to make use of either the computer program referenced later in this

chapter or the conclusions stated in the numerical example presented in Chapter 8.
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The dipole model of the earth’s magnetic field has been derived by Wheeler (Reference 10). The
use of the earth’s magnetic field in conjunction with the magnetic moment of the spacecraft and solar
panel assembly results in the fact that the dominant frequency components of the residual magnetic

disturbance torque are constant, orbit rate, and higher harmonics of orbit rate.

Because the nominal system input is zero, and because of the limited frequency content of the
dominant ‘‘uncontrolled disturbances,’’ this problem can be treated as discussed earlier. Specifically,
a meaningful performance criterion for this class of problem would be one that utilizes the total
weighted mean square error, which can be computed by evaluating the error response functions at each
of the frequencies resulting from the dominant disturbance torques. This quantity can be used as one
element of a factor-of-merit function, and it can be minimized as a function of the system parameters.
The second element of a meaningful factor-of-merit function must involve system damping or transient
response. This element can be factored into the performance criterion by the consideration of only
those sets of parameters for which the time constant associated with the dominant system resonance

is less than some predetermined value.

6.2 Development of Error Transfer Functions

Cyclic pitch disturbances that give rise to time-varying coefficients in the roll, yaw, and gimbal
equation set are considered in detail in Chapters 5 and 7. For the purposes of a harmonic response
study, however, it is necessary to assume that these variations are negligible. Chapter 8 attempts to
validate this assumption and to verify that the linearized equation set adequately models the nonlinear
system within the neighborhood of interest.

The error transfer functions that must be considered are those that relate the roll, yaw, and gim-
bal angles to the roll and yaw components of the residual magnetic disturbance torques.
The required transfer functions can be derived with the equations developed in Chapter 3, Equations

(5.1), (5.2), and (5.8), and Kramer’s rule.

Giy G Gy @ T 4«
Goy  Gog Gy y | = 0 ,
Ggy  Ggp  Ggg 4 Ty,

where ¢ = roll angle, y = gimbal angle, ¢ = yaw angle, T dx = roll component of disturbance torque, and

sz = yaw component of disturbance torque.
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The G matrix components are |
Gy ={Hp [2(8%8 + CB) - S(SACAY] ~ 145 +4080,5- 1,9},
G 1o ={Hp[2,CB - 5B}
G5 ={H, [5(5%8 + OB) + QGSPCE] + Qgs(lyy + 115119} .
Goy={- Hy[s(58) + 2,081} .
Gog=[kg+ B s ~QgH,],
G s ={Hy[Q0SB - s(CA]} .
Gy ={Hp[QSACE - 1) - SC%B)] + Qgsl 15~ 115~ 11} .
Gy ={-Hy[sCB) + Qg8E]} .

and

Ggg Z{Hb [s(SBXCB - 1) + Q,C3B] - ’1352 -0~ 1, 1)} '

By definition

Gyy Gyp Gy

The desired transfer functions can now be written directly.

R 2| o _ GogGgg—GgpGog
loy de w=w; A
R _ qS . _ G12G23_G22G13
2w, =| T, U@ -
1 dz ©=w, A
]
G,,Ghy-G4, G
R3m - le (]w) - 21 - 32 3122
1 dx ®=w, A
G,,.G,~-G,, G
R4w - T({£ (]w) _ 11+~ 22 21712
1 dz ®=w, A

S=jﬁ)1

S =jwy

S = jw,

S =jw,

(6.1)
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|y . | CG23C31-G33Gy
Ry, =| 7 (o) -
1 dx ©=0, A s:j(,)1
G, .G, -G, G
Rem - TX (i) _ 13721 23 T 11
1 dz w=w, A S =jw,;

Define R ip &S the ith transfer function evaluated at w = 0, Rj1 as the ith transfer function evaluated at
0=, (Qq = orbit rate) and R, as the ith transfer function evaluated at o = 290.
Algebraic manipulation yields the following results in terms of the normalized parameters defined

in Chapter 4 and of the relation Bg = BQ gl 5. The numerators of the six transfer functions are
A¢
i (Go)= [k -h)(a-p+C>ph S2ph? ~p+C28h) + (k - [SBrECB - D}
air, ()= [-b(a-prCo) + 57 ] +{Bla~p+ O + &k - 1) [30(CE - 1]} jo
_ {h[SBB(CB—l)—C2Bh2] —(k—h)}cu2+ [B]iw®,
A
54 ()= [-CBSprk - 2h k-h) [-1-a+p-CBh|-SBh(SBk + CBB) - C2BhZY
Pt g Ge) = [-Opspnc —em] « {k-m) [ 1-arp-Cpr]-spn(spk + CpB) - Ol
~ [B(p-a-1-Cph—s2Bh) + CASBnZ] w?,

A
%Zl/‘;,— Gw) = [k - h)(Sph) - CpSBhk—2h)] + {(k -0 (1+a-p) +h[CPBk + S%n
0 “dx

+SBB[L - Cﬁ:]]) jo - [B(t +a-p)+ CAI(CEB + SBh)] w?,

A
%ﬁ‘(jw) = [k -h)(4-4p+Cph+SPBh) + CPr%] + [~ SBCRA(k ~ h) + hB(CPB + §%p)

+4B(1 ~ p)] jo — [~ alk ~h) + Spn (- CPB - $pn)] w®+ [Ba]jw®,

%%ZT—M Go) = [Cph(a—p+h) -8%an2] + [~ Sph]jw - [CBAa~p+ ,:) ~ 5281%] 2
+ [sph] jw? .
and
Ay
1ot )= [48Bh(p - 1) ~ SBhA1 + CB)Y] + [CBM(-a - 3p + 3)] jo

- [8Bn(p — 1) - 80%(1 + OBY] w® + [Cpha] jo®
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If the determinant A is evaluated,

A
136 (o) = [(k —hX-a+p-h)4p-4-h) - h2C2B(— a + p — ) - h?3%B(4p - 4 — )]
0

+[BCa+p-m4p-4-0]jw
~ [ —h)ag+ h*C?B(Ra +2p -3 - h) +h%8%B(- p+ h + 2)] @®

- Bagje® + [alk - h) + h%aC?B + $28)] w* + aBjw’

where

ag=a(-p+2+h)+p2+ 21 -h)p-8+h+h?.

6.3 Factor-of-Merit Function
Unfortunately, it is not possible to arrive at a unique factor-of-merit function by which one could
accurately measure overall system performance. However, a reasonable choice for such a function can
be made on the basis of the special characteristics of this class of problem. This section defines a

function chosen on the basis of the discussion in the first section of this chapter.

R = C¢{¢2(const) + (;52(90) oo+ ¢>2(n90)}

+ C¢{w2(const) s YRQ + dlz(nﬂo)} (6.2)

. Cy{yz(const) eV Q) + .+ )

where qﬁg (const) is the mean square of the roll angle resulting from constant (i.e., not time-varying)
components of the disturbance torques and the other mean square quantities are defined in an ana-
logous manner. C¢, Cl/l, and Cy are weighting factors assigned to each of the three components of R.

In addition to the consideration of the mean square steady-state response function R, for transient
response to be factored into this performance criterion, one can require that the real exponential as-
sociated with the dominant system resonance have a time constant less than some preassigned maxi-
mum Tm. Define T = 1/0 where o is the real part of the complex root in question.

The formulation of this factor-of-merit function affords a potential user the tools by which he
might choose a best set of system parameters for a particular problem, given the physically realizable
range of these parameters along with some knowlege of spacecraft configuration, system damping re-

quirements, and certain orbit parameters.
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Although the optimization of the R function as well as the factorization of the characteristic poly-
nomial are far too complex to be handled analytically, this type of problem is well suited for programed
digital computation. Given an array of possible system parameters and certain orbital information, the

user can choose the best set of parameters suited to his particular needs by allowing the computer to

search all combinations of parameter sets. Restricting the search to only those cases that meet the
constraint placed upon the overall system transient response, the computer will single out that set
associated with the minimum value of R.

It is shown in the development that follows that for the spacecraft alone, one with no driven solar
panels, the only orbit parameter with which the user must be concerned is the orbit plane inclination.

This quantity remains essentially fixed throughout the life of a spacecraft.

In general, the spacecraft magnetic moment has no preferred orientation. This orientation is dif-
ficult and expensive to establish before launch and, furthermoré, is often affected by the launch opera-
tion itself. For this class of spacecraft, it was possible to maximize the response function R anaiyti—
cally as a function of the physical orientation of the residual spacecraft magnetic moment in terms of
the system parameters. The maximization of R assures the user that he has accounted for the orienta-
tion that would give rise to the worst-case mean square steady-state response. If the actual location
of the magnetic moment is different from the worst-case location, the actual response to disturbance§

will be less than that predicted by the digital computer program.

A spacecraft with driven solar panels requires the definition of certain additional quantities. For
these spacecraft, the user must define certain information concerning his proposed orbital parameters
according to the needs of his particular problem. Specifically, he must concern himself with the time of
year of launch, the projected spacecraft lifetime, and the angle between the ascending node and the ver-

nal equinox at various intervals throughout the spacecraft projected lifetime.

Here, the complexity of the steady-state response function R precludes maximizing it analytically
for the worst-case orientation of the spacecraft magnetic moment; however, this maximization has been
accomplished by incorporating a search routine within the structure of the optimization program. Fur-
thermore, if the user is unable to arrive at meaningful values for the required orbital parameters, those
other than orbital inclination, or if the projected lifetime and/or the precession rate of the orbit were
such that it would be desirable to maximize R as a function of these parameters as well, an alternate
search routine has been incorporated into the program to eliminate the requirement of defining these

parameters. These parameters will be discussed in detail in Appendix C.
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Finally, the user is free to assign the values to T o the settling time constraint, and the weight-
ing factors C e C¢, land Cy that would be commensurate with his particular mission. For example, the
weighting factors might be selected to emphasize the importance of a roll error while downgrading the
importance of yaw and gimbal angles if the spacecraft mission were to point a sensor or a spacecraft-
mounted communications parabolic antenna toward the spacecraft subsatellite point. On the other hand,
if the mission were to relay radio signals to a second satellite in the same earth orbit by means of a
parabolic dish antenna, the user might wish to downgrade the importance of roll and gimbal angles
while emphasizing that of the yaw angle.

A detailed derivation of the residual magnetic disturbance torque model and the associated deriva-
tion of the sun angle, solar panel reference angle, umbra half angle, and umbra-associated Fourier

coefficients are presented in Appendix C. In addition, a numerical example will be presented in Chap-

ter 8 for the purpose of clarification.

6.4 Formulation of the Weighted Performance Function

The response function R was defined by Equation (6.2).

R = C¢{¢2(const) + 9AQ) + ... + 92 (n9))

+ Cw{gl/z(const) + x[/Z(QO) + ... + l,bz(nQO)}

+ C7{72(consl) + 72(90) + ...+ 72(1190)}

where <1>2(c0nst) is the mean square roll angle resulting from the composite constant components of the disturb-

ance torques, and the other mean square factors are analogously defined. C¢, Cl/I, and Cy are weighting factors

assigned to each of the three components of R.

The six required transfer functions were defined by Equation (6.1) as

= |lo . =|_¢
R = | (jw) R = |+ (w
1(.ol Td.\- w=w, Zwl sz(./ )w=wl
— | ¥ — | ¥
R = = (jw) R = |=—(w
3"0[ Td"' W=, gl sz ) w=w,
Rs, = Tl(jw) and R6w = l(jw)
i dx w=w| 1 sz w=w1
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But the equations have been normalized to orbit rate so that for w = QO ,w = 1; forw= 29 ,wp = 2; and so on.

For the class of spacecraft without driven solar panels, it is shown in Appendix C, Equation (C.1) that

m
Tyx = [(m,0C0) + (2m,480)521]
o
and
mL’
T, = _r;[(ﬂnxoco) +(om, OSa)CQOz] )

where m ., m 0’ and m,, are the components of the spacecraft magnetic moment vector.

Substituting T; [Equations (C.1)] and the transfer functions [Equations (6.1)] into R results in the following

expression:

= £ 2 2 2 2
R= = l o[m2y(CoREy + CyRYy + CyRY) + m2((CyR3y + CyRZ, + CRE))
"o

520 2
2 2 2
- 2m, g, o(GR1gRyg + CyRygReg + CyRsoReo) | =527 [#(CyRT + CyR3, + CyR,)

+ (C¢R%1 +C¢,R§1 +C7R§1)] ,

It can be demonstrated that the mean square error function R = Cg/4 +1/2 Z
n=1

where
= 2 2
Cn an + bn ?
Cy =ay/2,

a0/2 = amplitude of constant component,

N
It

amplitude of cosine component of #th harmonic,

and

b, = amplitude of sine component of #th harmonic.
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To maximize out the orientation of the spacecraft magnetic moment as discussed earlier, it was found con-
venient to define the spacecraft magnetic moment m, in terms of the spherical coordinates shown in

Figure 6.1, where m , = m;S&Cr, m,q = mySEST, m,,= m,CE, and my = I m, .

29 Xg spacecraft roll axis
)_(0 =|{¥9 |= spacecraft pitch axis
Zg spacecraft yaw axis
mo (f
/ Yo
/
™~/
/
/

X

Figure 6.1-Spacecraft magnetic moment in spherical coordinates.

For case of manipulation, it was convenient to rewrite the response equation as

n 2

= % (1,2 2 2
R = % (szA + m B+ m gm,  C+ my0D>
0

where

S
]

2 2 2 2
C a(C¢R10 + C¢R30 + C'yRSO)’

)
I

2 2 2 2
C20(CyR3y + CyR3, + C R,

&
[

o2
2C%0(CyR o Ryp + CyR3oRyy + C Ry Rey),

and

S%g 2 2 2 2 2 2
D = S2[4(CyRY, + CyR3y + CyRS)) +(GyRyy + CyRYy + RG]

If substitutions are made for Mgy M0 and m, in the expanded expression for R, R is differentiated with

respect to £ and 7, and the resulting expressions are set equal to zero, then
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R _ - cgsl-4 + BCr + DS¥r] + Crlc - s%15 = 0
2m(2)a§

R sgsT[CTSg(D—B) - cg%} 0.
Zm%a‘r

Three possible maxima result from these expressions:

(1) £=90° 7=90

(2) £=0° 7=90°

(3) Let r=0°,
(-4 +B)CESE + [C2- 5715 = 0,
1 Con.
(-4 +B)‘2'SZE + —2'C2E =0,

tan 2¢ = /—4(_:'—3

R = R evaluated at S=é—tan'1 (;1?—3> and 7=0°

c [ct
(4) Let CT=5m<§§>

¢t ¢k c? 025} Cr CE o,
CiS¢j-A+B————=+D-D—"—— =S|+ ———— 2 [C*¢-S%¢] = 0
EE[ 4D - B)? s a(D-B)? s2¢| 4(D-B) Sk

c4 |, _
Cgl:D—A— (——D_B):IS £=0
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The only valid solution for Case 4 is the solution already covered by Case 1.

For a given set of parameters. that define A, B, C, and D, the resulting R’s must be checked to
establish which of the three has the maximum value. In this manner, the user need not concern himself
with the location of the spacecraft magnetic dipole. Furthermore, he must only estimate its magnitude
if he is interested in relating his normalized response values to actual steady angular errors.

Having maximized out the location of the spacecraft magnetic dipole, the user need only put into
the optimization computer program the array of possible system parameters, the proposed orbit inclina-
tion angle, the weighting factor values for each of the three components of the steady-state response
function R, and the value chosen for T, the maximum system settling time. The computer program
then selects the best set of parameters commensurate with the factor of merit discussed earlier.

Of course, if a preferred orientation of spacecraft magnetic moment happens to exist for a particu-
lar problem, the potential user can override this maximization routine by actually defining & and .

For spacecraft with driven solar panels, the procedure of choosing a best set of parameters makes
use of superposition. The magnetic disturbance torques due to the spacecraft alone must be summed with
those due to the incidence of solar energy on the rotating solar panels before the mean square error function R
can be formed. The solar panel associated torques are expressed as Fourier series.

For practical systems with which the potential user would be concerned, the six response functions fall off
rapidly above w; =2. With this in mind, the only Fourier expansion terms that are considered to be important
are those at w; =0 (const), w, =1 (2¢),and w =2 (22)-

The total steady-state response function for this more complex problem can be formed as shown in the

following development.
Let

h N
h

e CtC
0 rg (mO 0) ’

h S
fl

m
—r—g‘% (2mSg87S0)

)
]

m
0 = (-myStCrCa),
"o

and

%
]

m
. —3—e (- mySESTSO) |
To
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where

Mo = S¢Crmyy,
m, 0 = SESTmO,
and
My = Cémy,.
Let
=Ay+A4,5Q,r+ fop
and
T;, = By +B,CQut + szp
where
T,, = total x component of magnetic torque,
T,, = total z component of magnetic torque,
fx p and T zp represent Fourier expansions and are defined by Equations (C.12) and (C.13) in Appendix C.
Then,
= C¢[¢2(const) +92(Q) + ¢2(znoi+ Cy [tl/z(const) + () + 11/2(2&20)}
+ cy[vz(const) +7%(Q) + 72(290)]
where
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v2(2,)

A + ) + (B +E>R ]2
2(const) ] 0 2 20 >
2

—_ 20x 20z
y2(const) ~ (AO+ <) Rs +<30+7>R40] ’

—_ A +a0x> +<B +E)R ]2
(const) (0 0 2 /760 |°

2

2
Ay +b1 )Ry ”’1sz1] + [(B1+alz)R21+a1lel]

I

2 2
|:(A1+b1x)R31+blzR41:| + [(Bl+alz)R41+a1xR31] }

I 1
D= 1|



_ 1 2 2

Q) 5‘EA1+b1x)R51+blzR61] + [(B1+“1Z)R61+“1xR51] ]
- =1 —(b R, +b, R,)2+(a, R,,+a, R,,)>

¢2(2Q0) 2 |B2x Rzt b3, Rpp)" + @y, Ryp 25, Rp))7 |

—_— _ 1] 2 2

¥22Qy) T 2 L(bszaz’rbzz Ryp)* +(ag, R3y ¥ 2y, Ry)) ]

2 ey 2 2

T'(22) = 5 |Byx Rsp ¥ by, Rg)? +(ay, Rsp +ay, Ry) ]

The terms ajj and b,,, fori=0,1,2;1=1, 2; and j = x, 2, are defined in Equation (C.11).

1j

The complexity of the resulting equation makes it impractical to maximize out the location of the
spacecraft residual magnetic moment analytically for this more general class of spacecraft.

In addition to being dependent upon ¢ and 7, the angles associated with the orientation of the
spacecraft magnetic moment, the expression for R is dependent upon A and ¢, two of the orbital para-

meters defined in Appendix C and shown in Figures C.1 and C.2. The angle ¢ defines the position of

the sun within the ecliptic plane, and A defines the angle between the ascending node and the vernal
equinox.

These angles might be established as a result of given mission requirements in which case the
user would simply put them into the optimization program along with the array of possible system para-
meters, the proposed orbit plane angle of inclination, the weighting factors for each of the three com-
ponents of R, and the value chosen for T;. A search routine was incorporated into the program that
establishes the worst-case orientation of the spacecraft moment, and both & and r were eliminated from
the R equation.

Although it is conceivable that both ¢ and A would be defined by mission requirements and the pro-
jected time of launch, these quantities, except under very special circumstances, vary with time. The
angle ¢ increases at the rate of 1°/day, so that unless the proposed lifetime of the spacecraft is very
short, ¢« must not be considered constant. In addition, except for purely polar or purely equatorial or:
bits, the orbit plane will precess at some finite rate and A will increase or decrease accordingly. For

these reasons, an alternate search routine has been incorporated into the optimization program. This

routine maximizes R as a function of &, 7, ¢, and A simultaneously. In this manner it is possible for
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the user to consider the worst-case set of conditions that might result tﬁroughout the entire lifetime of
the spacecraft. Any of these angles can be removed from this four-dimensional search routine by sim-
ply defining it equal t'o some constant value.

. Admittedly, the four-dimensional search routine is somewhat time consuming even on a large digi-
tal computer, but this is understandable when the complexity of the problem is considered. If the user
wishes to make use of the full maximization search routine, it is necessary that the number of param-
eter sets to be surveyed be limited to a few thousand so computer run time can be kept below 30 min-
utes. On the other hand, hundreds of thousands of parameter sets can be examined in an equivalent
computer run time if the four-dimensional search can be deleted entirely. If a spacecraft without

driven solar panéls were to be considered, such would be the case.

If the user felt too restricted because of the time limitations imposed by the four-dimensional
search, the problem could be broken into two parts. A coarse parameter array could first be considered,
and then a fine search about the initial optimum chosen could be performed.

As in the case of the spacecraft alone, the result of the optimization computer survey is the best
set of system parameters commensurate with the factor of merit defined in Section (6.3). The set of
parameters that minimizes R does so for the worst-case orientation of the spacecraft moment as well

as simultaneously for the worst-case combination of ¢ and A at the option of the user.

6.5 Digital Computer Optimization Program

The program listing appears in Appendix D and was written to accept an array of input parameters
and to survey and choose the best set.

These parameters include the normalized roll inertia a, the normalized pitch inertia p (note that
normalization is with respect to yaw inertia), the angle of gimbal axis with respect to spacecraft roll
axis 3, the pitch-momentum bias Hb’ the gimbal damping Bg, the gimbal spring constant kg , the
weighting factor for mean square roll error C¢, the weighting factor for mean square yaw error C(/j,
the weighting factor for mean square gimbal error Cy, and the maximum allowable settling time ’I’m.

The program begins by making use of the stability criterion established in Chapter 4. Any param-
eter set that would cause an instability in a linear sense is detected and eliminated in this manner.

Next, the program eliminates the spherical coordinates & and r associated with the orientation of the

spacecraft magnetic moment, analytically for the spacecraft alone and by means of a numerical search

for the spacecraft with driven solar panels. In the more complex case, the spacecraft with driven solar
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panels, the additional orbit-associated angular parameters ¢ and A may be eliminated at the user’s op-
tion by means of an alternate numerical search routine. The maximization routines associated with

any of the angles &, 7, ¢, or A can be bypassed simply by defining the angle in question.

Each of six transfer functions are evaluated at the frequencies of interest. The response is prop-
erly weighted by applying the appropriate input torques to each transfer function at each frequency con-
sidered, and the R function is formed.

The characteristic polynomial is formed and factored, and the dominant complex pair is singled

out by the computer. The real part of this complex root is examined and compared to 1/Tp. Cases
whose real part is less than 1/Tm are discarded; those with real parts greater than 1/T  are stored at
this point for further consideration

For the optimum chosen, the normal printout associated with this program includes the parameter
set itself, R, the real part of the dominant complex pair, the damped natural frequency of the system,
the components of the mean square error from which R was composed, and the worst-case angles &, r,
¢, and A when appropriate.

If the number of parameter sets is not prohibitively large, all or some of these quantities may be
printed out for each of the parameter sets considered. In this manner tradeoffs between the conven-
ience of achieving a particular parameter set and the poorer performance obtained for a closely associ-
ated parameter set that is more easily available might be made. Alternately, a parameter set that
corresponds to a more heavily damped system at the expense of a slightly larger weighted mean

square error might be chosen.
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CHAPTER 7
SOLAR PANELS AND ASSOCIATED SPACECRAFT STABILITY

7.1 General Discussion

It has been pointed out in earlier discussions that the actively controlled pitch loop affords the
spacecraft the ability to accomodate pitch axis momentum disturbances. The most severe of these dis-
turbances would probably be the result of a driven solar panel assembly.

The consideration of driven solar panels with regard to the residual magnetic disturbance torques,
however, brought to light an area that had been ignored until now. If the treatment of the driven solar
panel assembly is to be complete, the effect on vehicle stability of the variation in spacecraft inertia
caused by the rotation of this assembly at orbit rate must be considered.

If the performance of the total system is to be acceptable, these periodic variations must have a
negligible effect upon the system. This chapter, however, deals only with the effect upon system
stability of the time variation of inertias. The method of analysis is identical to that in Chapter 5,

and for this reason, the discussion will be kept brief.

7.2 Equations of Motion With Inertia Variation
For the purpose of this discussion, it is assumed that the spacecraft is under perfect control and
that the solar panel assembly rotates at exactly orbit rate.

The panel assembly coordinates and the coordinate transformation matrix from panel assembly to
spacecraft coordinates are defined in Appendix C.

From Equation (C.2),

COpCu - CGPS;L 56,
A po = S Cu 0 )
-S6 pCr So pSe Co,

where ApO is the transformation matrix from solar panel assembly coordinates to spacecraft coordi-

nates. The angles Op and p are defined in Appendix C.
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CI>p0 is defined as the inertia tensor of the solar panel assembly in spacecraft coordinates.

- T
® 0= 450 0, 4,7,

where CDP is the panel assembly inertia tensor in panel assembly coordinates, and Ago is the transpose

of the coordinate transformation matrix A po°

The computation of the solar panel assembly inertia tensor in panel assembly coordinates is sum-
marized in the following calculations. Let %I xp be the inertia of each panel about the panel face
normal through the panel center of gravity; %/ vp’ the inertia of each panel about the panel shaft axis
through the panel center of gravity; %I zp’ the inertia of each panel about the axis parallel to the panel
hinge line through the panel center of gravity; % m, the mass of each panel; a, the distance from space-
craft center of gravity to either hinge line; and b, the distance from each hinge line to each panel cen-

ter of gravity. Figure C.3a shows a and b.

Assume that each solar panel is flat so that / xp= I I zp and that only the panels themselves

ypt

have mass.

The inertia tensor for each panel referenced to its own center of gravity may be written as

1/zIXp 0 0
1
<Dpcg= 0 /21yp 0 . (7.1)
0 0 ‘/zIZp

When the tensor associated with each panel is translated to the spacecraft center of gravity and the

resulting two tensors are summed, the resulting inertia tensor can be written in panel assembly

coordinates.

{Iyp+m®+aC? | -m(b+aCpw @ sw) {o}

CI’p: {—m(bnaCy)(aSy)} {pr+m(a S#)z} { 0} (7.2)

{ o} {o} {I,p+m[@+b Cw?+ b 7]
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This tensor was next transformed to spacecraft coordinates, and the result is expressed in the

notation
Ipo A1) 1,,(12) I (13)
® 0= I (D) I (22) Io @3 |, (7.3)
I, 31) Io(32) 1,0 (33)
where

Tpo ) = [, —1,, 8% - m (b §0%] G260+ m [(a+bCw?+®sw2] + Ly
Tpo (12) = [1,,8u Cu + m (@ + b Cw) (b 5)] Co,,

Tpo )= L1, -1, 8% - m o 57) 86, Co,, |

Io @D = I,g(12),

o @)= I, +1,, S%u + m (b Sp)?, (7.4)
lo @)= ~[1,,8:Cuvma+bCp®sy] 86,,

Io B1) = I,q(13),

Ip0 (32) = IpO (23),
and

2
1,0 (33) = [lyp — 1, 8% —m b S?] 8 6,+m [(@+bCw? +®8?]+ Lyp:
where

6p = epo + Qot,

2, _ ,
5%, =[1 - C 20,)] /2,
%, {1+ C (20,)] /2,

and

co, SGP =8 (26p)/2.

The system equations of motion were developed in Chapter 2, and the gimbal, roli, and yaw equa-

tions are restated here.

Hoy +wgy Hy, - wg, Hyy, = Toix+ Topy + Togy
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- 0 -
H1x+‘°1yH1z“°12H1y=T11x+T12x+T13x+ Ap ‘T24y

l_" T24z__J X component
- o A

Hy,+ oy Hly—wlyH1x= T+ T1o,+ Tigz + {41 | - T24y

l___ T24z _J1 ) z component
The gimbal equation is unaltered by the solar panel assembly inertia terms; however, the terms

in the body 1 x and z axes equations are modified to
Hip= [+ Lo Q0] dyy+ [T, 12)] oy, + [0 13)] 6y,
+ ipo (1D wq, + I'p0 (12) @y, + IPO (13) .
a,,- [Ip-o B @y, + [Tpo 3] @y + [1po BD+15] &y,
+ ipO (81) w1t ij (32) ©qy+ ipo 33) W1z
H =1+ o U] @, + 16 (12) 0y, + 1,0 (13) @,

Hy = Io@Doy,+ [Ig+150 2] 0, + 1, (@) oy,

and
le = Ip0 (31)w1x+ 1p0 (32)w1y + [_13 + Ip0 (33)] Wy,

The right-hand torque terms must also be altered to include the solar panel inertia components.

The resulting equation set is

Ty,

X

~HySB¢~CRH,y+B, v~ CPAH,b + Hy 8B ¢ + (ky~Hy Qg) y=0

1x:

T
Too (12)6 ~ U b + 1o (13) § + [~ 205 1o 3] 6

+ Qg Ig (13) = Qg [po BN =SB CBHY) & + Qg 1] + Qg 15~ Qg I + S*B H,) ¢
+(CBB ~SBHYY+(=3051,(12)0+@Q5U5~19)+ B HY ¢

+ (@2 Ino (31) + Qg SB CBH,) Y + (CB k,~SB H)y

vl an[é-Qqu] +ip0 (12) [6-Qg] + 1,6 (13) [+ Q ¢] = -8 Q1,4 (23)

+ IpO (32) Qg ]
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1,632 + 1,4(31) ¢ + (- 10 + [2Q4f ,c12)] 6
+(=Qyllg +1{ ~15)~ CZBH )¢
+ (Qqf po(18) + SBCBH , — Qf LBV + (- SBB  — CBH )y
+ [308 023)] 0+ [40F,((13) + SBCLH 2] ¢
+ (QC%BH, — Q20 5 ~ 1 W ~ (CBHy + k SB)y
+1,0BY [é - Qo] +1,:B[0 -]
+1oBBHY + Qoo = 1,,(12)03

where

I/ =1, +1,0(11)

Ig=Ig+1,(22)

Ig =1g+1,(33)

The practical usefulness of this system requires that the active pitch loop be tightly controlled so

that it may accurately be assumed that 6=60=0=0 in the roll and yaw equations. This assumption

and the error equa-

allows the sz, T and T1z equations to remain decoupled from the le, T

1x’ 3y’

tions. After substitution,

T2X:

- HySBd — CPH Y + B gy — CRQAH b + H, SR + (kg - HpQgy ~ 0 (7.5)
T,y

1§+ 1,13y +{QO[IPO(13) - 1P0(31)]_ SBCBH, + 1p0(11)}¢'

clogu v 15 1)+ s%pH, + ip0(13)]¢'

+ (CPB g~ SBHY)y + [408U 5 ~15) + SPBAH, + 0y ,o(13)] 6

+[ Q8 03D + QgSBCBH, — Qo AD]W + (- SBH, + CBk Yy =

- [3081,028) + 143203 - Q4 ,o(12)] (7.6)
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T

1z:

1oV ~Igth + [~ Qqlg +11 —15) — C3H ), + 1 (81)]6
{0l po(13) - 1,0(3D)] + SBOBH , + 1 ,o(33)}s
+ (- SBB - CBH )y +[4Q8 )(13) + SBOBH 2 + Oyl (33|
+ [9002/8”2) ~ 98ty 1)) - Qol.po(?’l)]‘/’

~ (CBH, + k SB)Y = Qo[ 1501202 + 1 5(32)] 7.7)

The resulting set of coupled linear equations with periodic coefficients is nonhomogeneous. How-

ever, as with any set of linear equations, superposition applies and the equation set can be made homo-

geneous for the purpose of investigating system stability. The details associated with applying the

Floquet criterion to this set of equations follow exactly as presented in Chapter 5.

7.3 Floquet Problem

The algebraic manipulation of Equations (7.5), (7.6), and (7.7) that results in the system state

matrix A, where X = AX, is detailed in Appendix E. The elements of this state matrix are
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a(11) =0,
a(12) =1,
a(13) =0,
a(14) = 0,
a(15) = 0,

, S
a(21) - Ck[I3d 1199 + - CBQOHb],
, S
a(22) = ck[zsa *Lpg12% + SBHb] :
, S !
8(28) = C 4l s OBk x — I (130 SB - 5= {] ,
8
’ S
a(24) = Ck[ISb +1g(13)h + B CBHb]'

’ S
a(25) - ck[13e “Tg13r - Hbs,eszo],



and

where

a(31) = g (CAQYH,) |
-4

a(32) = 3 (H,SP).,
-4

1
a33) = = (-h),
Bg
a(34) = o (CBH,) .
4

a(35) = 5~ (~ H,3p0) .

. t
a(41) - Ck[lp0(13)d+llq o C[)’QOHb],
g

a(42) - ck[lpo(lg)a i1, 8+ B‘— HbSB:],
8
a(43) = Ck[1p0(13)CBkg 1k S - o f],
14
a(44) - Ck[lpo(ls)b R C,BHb:|,
g

a(45) - ckEpo(m)e Pl o HbS,BQO:I,
g

a(1) =0,
a(b2) =0,
a(s3) =0,
ab4) =1,

a(s5) = 0,

a =~ 8BCRH, +1,4(11)
b=Qqy +1g -15)+S%BH, +1,,13)

c=CBB,-SBH, ,

d = 40515 ~ 1) + S*BQH ), + Qf ,(13)
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e = 08 (13) + Q SECHH, - 0 A1),
f=kg-HpQy,

g=~Quly +15~15)-C?8Hy +1,(13),
h = SBCBH, +1,4(33) ,
p=-SBB,~CpH, ,

q = 408 ,(13) + SBCRH L2 + Lyl p(33) .
r=Q.C?BH, - Q314 - 1) - Q4 ,o(13)
s=Igc+1,,13)p,

t=1p+1,413)c,

and
-1
k=

Cp= ‘2__‘—,/
18,13) =151 .

The system state vector is defined as

[+, - ]
X -
X=|x5=y
X, =i
GEd

Each of the terms that make up the elements of the A matrix is constant with the exception of the
elements of (Dpo and those of (bp()' The approximations used for the purpose of computing the associ-

ated state transition matrix are listed below.
s%, ={1 -~ sgn [C(zep)]}/z
C20, {1 + sgn [C(zep)]}/z
86,C6, = sgn [S(26P)]/2

5%, - sen [8(26,)] 2,
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Trrug

céap =—sgn [S(26P)] Qo

36,06, - sgn [C(20,]] 2

At this point, it is possible to substitute the elements of this piecewise constant A matrix into
the computer program listed in Appendix B. A potential user thus could solve for the set of state
transition matrix eigenvalues associated with any parameter set he might choose, or he could do an
entire Floquet study exactly as was performed in Chapter 5. Since no new technology would be gained
by detailing this problem as was done in the case of the variational pitch-momentum bias, this partic-
ular program will be used only to verify those results obtained from the optimization program discussed
in Chapter 6. That is, the Floquet criterion will be applied to the equation set that includes the time-
varying inertias to verify for a given set or sets of system parameters, whether or not system stability
is appreciably impaired by the inclusion of variational inertia terms associated with a particular

problem and a particular solar panel configuration.
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CHAPTER 8
VALIDATION OF THE USE OF A LINEARIZED TIME-INVARIANT EQUATION SET

8.1 General Discussion

The complete equation set that mathematically models the gimbaled-reaction-wheel-scanner space-
craft is very nonlinear. Moreover, the equation set is complicated by the inclusion of large variational
momentum bias terms that may result from a pitch axis disturbance torque and the inclusion of the time-
dependent inertia terms that would result if a driven solar panel were part of the spacecraft configura-
tion. Lyapunov methods are sometimes used Lo study the stability of both nonlinear and time-varying
systems. However, it is highly unlikely that these methods would yield any useful information if they
were applied to a system as complex as the one under study. Clearly, to establish generalized sta-
bility thresholds and/or to find a meaningful performance or factor-of-merit criterion, it was necessary
to work with a linearized time-invariant equation set. Accordingly, a user must justify the use of this
fabricated equation set by validating the results obtained.

The knowledge of stability thresholds alone is of limited usefulness, even when these thresholds
are known in general. More important is the ability to choose, from an array of available parameters,
those parameter sets that not only cause a particular spacecraft configuration to be stable but also
allow the spacecraft to meet certain mission requirements in a favorable manner. For this reason, in
the final analysis, the number of parameter sets that a user must numerically validate will be limited.
Accordingly, he should not find the given numerical methods too restrictive.

The optimization routine of Chapter 6 singles out parameter sets in their normalized form. At
this point, the user must scale his problem by assigning numerical values to the spacecraft and solar
panel magnetic moments. The particular values must be chosen to make the roll, yaw, and gimbal

components of rms error an acceptable level.

8.2 Method of Validation
When a linearized set of equations is used to determine general thresholds of system stability,

validating the results is a two-sided problem.
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Certainly the linearized time-invariant equation set will adequately describe the system
within some limited neighborhood of Xo, the system equilibrium state. When trying to determine
whether the neighborhood is sufficiently large to be of practical interest, the general analytic sta-
bility problem must be reduced to one that can be handled by numerical methods. A useful method of
validation was comparing the output of two digital computer simulations by means of overlay. One
simulation contained the linearized equation set; the other, the nonlinear equation set. By choosing
initial condition sets arbitrarily large in magnitude, the size of the neighborhood within which the
linearized equation set is valid could be approximated. Certainly, this neighborhood must be well in
excess of the rms error components associated with the particular parameter set under investigation

if the equation set is to be at all valid.

Alternately, the other part of the problem concerns itself with what happens once we cross into
the so-called unstable region. Suppose, for example, that the small angle mathematical instability
manifests itself in a very small amplitude limit cycle about XO. Moreover, suppose that aside from
this limit cycle, the system is well damped and well behaved. Although this parameter set would
have been ruled out by the linearized stability study, it might have produced a perfectly acceptable
system.

However, because of the method of presentation discussed in Chapter 4, it was possible not only
to establish the small angle stability thresholds, but also to determine the type of instability encoun-
tered once a threshold was crossed. The type of instability in all but one particular case was found
to be a loss in null reference, which would clearly be unacceptable. The particular case excluded
above occurs when p = 1 within an otherwise stable region. The type of instability here would be an
undamped oscillation; however, the condition described results from the absence of roll axis gravity-
gradient restoring torque. This case is also unacceptable because the instability would be manifested
in an uncontrolled coning of the roll-yaw plane about the pitch axis.

Accordingly, it is only necessary to consider the stability of those parameter sets that lie within
the linearly predicted stable regions.

Once it has been shown that the system is accurately described by the linearized equation set
within the neighborhood of interest, it follows that the response and performance information derived
from these equations are valid as well. The validity of neglecting the time-varying coefficients must

be considered next.
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Because bdth éystem stability and harmonic response are directly related to the set of system
eigenvalues, the desired validation would be accomplished if it can be shown that the effect of the
time-varying terms upon these eigenvalues is small.

The most complex situation is spacecraft with driven solar panels. As a result of the perform-
ance study detailed in Chapter 6 and the scaling procedure discussed in the introduction of this chap-
ter, all the necessary information is available to completely define the system, its magnetic disturb-
ance parameters, and its associated orbital parameters. If this information, along with information
describing the solar panel assembly, is put into the computer program discussed in Chapter 7, the Flo-
quet characteristic factors result. From these, one can find the associated system characteristic expo-
nents for the time-varying inertia problem, and the exponents may be directly compared with the un-
perturbed system eigenvalues. If the two sets of system roots compare favorably, it can be assumed
that the validity of the results was not impaired by neglecting the time-varying solar panel inertia
components.

The validity of neglecting the variational component of the pitch-momentum bias term should be

the next consideration. The main body pitch equation is

1,0-Hy+3Q5U,-1)0="Tg,

It is assumed that the pitch axis is under perfect control for the worst-case variational amplitude
to be considered.

H p="T dy = pitch component of magnetic disturbance due to both the spacecraft alone and the
solar panel assembly.

Substituting the required information into the computer program described in Chapter 5 results in
the Floquet characteristic factors associated with this problem. As in the previous case, the system
characteristic exponents are evaluated and compared with the eigenvalues of the unperturbed system.

If each of the three proposed comparisons produce favorable results, validation has been com-
pleted. However, if the neighborhood within which the linearized equation set was found to be valid
was not sufficiently large, or if either set of the Floquet-defived system eigenvalues showed an appre-
ciable change from those of the unperturbed system, further consideration is necessary. For example,
the user might require that the chosen system or systems be more tightly damped by redoing the search

with a smaller value of T,. If a favorable validation is still not possible, altering the solar panel
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assembly configuration or raising the nominal value of H b might be tried when either of the respective
Floquet validations appears to be the problem area.
If these remedies fail, the user probably must resort to a computer simulation of the full set of

nonlinear equations, a clearly undesirable situation.

Two numerical examples are presented to clarify the discussion of this section as well as topics

discussed throughout the text of this dissertation.

8.3 Numerical Examples

The design requirement for a spacecraft without driven solar panels i% to choose a set of system
parameters for a gimbaled-reaction-wheel-scanner attitude-control system that would minimize the
steady-state spacecraft response to the worst-case magnetic disturbance torques that might act upon
the vehicle. Transient settling time* must be constrained to six orbits or less, and the parameters
must be chosen from values currently available using present technology. A tabulation of parameters
to be considered appears in Table 8.1. It is assumed that the residual spacecraft magnetic moment is
3.96 x 102 pole-cm. This corresponds to 2.5 x 108 pole-cm on each of the three spacecraft axes. The

mission requires an orbit plane inclination angle of 30°.

The parameter array of Table 8.1 is inserted into the computer program listed in Appendix D.
The total number of combinations of parameter sets considered is: (312) (64) Gratio) (5,8) (12Hb)
(Skg) (3Bg) = 48600. The output quantities chosen to be printed for each value of (Iy - IZ) considered
were the parameter set itself, the square root of the weighted mean square error function R, the real
and imaginary parts of the least damped system root normalized by QO = 10"3 rad/sec, the rms roll,
yaw, and gimbal attitude errors, and the worst-case spherical coordinate angles of the spacecraft mag-
netic moment. These results are tabulated in Table 8.2, and the computer-chosen optimum is marked.

The computer time required on an IBM 360-91 was 124 seconds.

The optimum parameter set was inserted into both linear and nonlinear computer simulations, and
initial conditions were chosen well in excess of the computer-found steady-state rms errors. The re-

sulting time responses are shown in Figure 8.1. Computation time for each simulation was 75 seconds.

Listings of these programs appear in Appendices F and G, respectively.

*Transient settling time is TS = 1/(2n0) (Reference 11), where o is the real part of the least damped root and
TS is in orbits when o is normalized by QO = 1073 rad/sec.
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Table 8.1—-Farameter array for use in optimization program.*

. . .k.'bl B,gimbal
1, I-1, Ratio of B - gimbal H, piteh sspgr;:ga dsamping
2 o 1.1 axis angle, momentum bias constant constant
(slug-ft<) (slug-ft=) xy (degrees) (ft-1b-sec) (ft-1b/rad) (ft-1b-sec/rad)
H, (1)=-10.
=10 A{1) =50 Ratio (1) = 0.75 B)=0 kg ()= 1074 B,(1)-025
Hb (@)=~ 5.
H, 3)=-25
I, (2) = 100 A(2)~ 100 Ratio (2) = 1.0 B@) =225 kg (2)= .33 x 1073 B (- 5
Hy 4)=-1
H, (5)-- 5
I, (3) - 200 A (3) = 250 Ratio (3) = 1.33 B (3) = 45. kg (3) = 1073 B, 3~ 75
Hy, 6)=- .1
Hy () -+ 1
A (4) - 500 B @) =675 k,(4)- .33 x 102
Hy ®-+ 5
H ®=+ 1
-2
A (5) - 1000 B (5) - 90. ke (®)-10
H o (10)-+ 2.5
H, (11) = + 5.
A (6) = 2000
H, (12) = +10. L
‘ly—lz= Am,). l,/ly = ratio (my). B = B(mg). Hy = Hy, (my). B‘ = Bg(’"s)- ks - kg(’"e)' andl, I,(m,).
Table 8.2—-Results of optimization for Example 1.*
2 2 2
m, |my|{m,| m, | m m R i 1 \/(75 \/‘Z' Y 3 7
1| M2 Ma i Ma| M| Mo | My | @27 2n /D0 | deg) | (deg) | deg) | (o) | (deg) -
. SV S S O i e
1 1 2 1 1 1 3.726 | -0.031+j1.10 [ 12.98 | 16.43 | 4.16 =70 0
2 1 2| 4 3 1 ]2 {181 |- .027+j111 | 6.78 7.91 1.59 920 90
3 1 213 3 2 (1 8071 [— .038 +j 1.09 | 2.55 3.63 | 1.32 90 90
4 1 2 3 3|1 4786 | — .038+j1.14 | 1.33 2.25 .810 90 90
5 1 2 3 311 3095 [ — .036 +j 1.10 679 1.45 .75 -84 0
teg 1 1 3 411 1738 | — .034 +j 1.36 424 .865{ .251 90 90

*Refer to Table 8.1 for actual parameter values.
To = -0.0265 ~ settling time of six orbits.

iOptimum for entire row.

Finally, the parameter set, the orbit plane inclination angle, the magnitude of the spacecraft mag-

netic moment and its associated worst-case spherical coordinate angles were inserted into the varia-
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Figure 8.1-Time responses for optimum spacecraft for Example 1. [.C. = ¢ = ¢y = 10°, and all other system states are
Angles are in degrees.

initially zero.



tional momentum bias Floquet program listed in Appendix B. The Floquet eigenvalues for the unper-

turbed and the perturbed system can be compared in Table 8.3. Computation time was 5 seconds.

Table 8.3—Results of variational momentum bias Floquet study Example 1.*

Magnetic Floquet Magnitude

moments eigenvalues of eigenvalues In |A;l/7Qg
(103 pole-cm) A 1A

|m0| =0. —0.5128 +j .62388 0.8076063 —0.034008329

Myp= 0. .0441 +j .00445 1044384198 - .49574734

\mol = 3.96 — 5128 +j .6238 .80760601 — .034008387

Myp = 0. 0441 +j .00445 .044383999 —~ .49574806

*m1:6.m2=1.m3;1.m4=3.m5=3,m6:4.andm7=1.

The mission requirement for a spacecraft with two driven solar panels is that each panel have an
area of approximately 50 ft%. For this second case, a parameter set must be chosen that minimizes the
steady-state spacecraft response to the worst-case magnetic disturbance torques that might act upon
the vehicle because of the residual spacecraft moment and the magnetic moment due to the current
paths on the faces of the solar panels. Transient settling time must be less than six orbits. The set
of possible parameters is the set shown in Table 8.1 except I, (1), I, (2), A (1), A (3), A (5), B (?),

B (4), kg (2), and kg (4). Also, the expression a = (Ix/ly)p was replaced by the relationship

a =(p + 125/1 ) to account for the pitch-roll inertia differential resulting from the large solar panels
chosen. It was assumed for this example that I, = ly in the absence of the solar panels. (a = Ix/lz,
and p = I y/I z.) The chosen residual spacecraft magnetic moment is 3.96 x 102 pole-cm, and the mag-
netic moment due to each solar panel is 2.5 x 108 pole-cm. The mission requires an orbit inclination
angle of 30°, and neither the location of the sun in the ecliptic plane nor the location of the ascending
node with respect to the vernal equinox is known.

The abbreviated parameter array is inserted into the optimization program, and the number of param-
eter sets considered is (11Z) Bp) (3‘3) (12Hb) (3kg) (3Bg) = 972.

The output quantities printed were the same as in the first example considered, with the addition
of the worst-case sun location angle and angle between the ascending node and the vernal equinox.

The results of this computer run are tabulated in Table 8.4. Computation time was 18 minutes.
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Table 8.4—Results of optimization for Example 2.%

| [
JR_ i /Q \/¢ \'lﬁ \[y_z— f T € A
(radians) | © 7 @nd" 0 | (deg) |(deg) |(deg) | (@eg) | (de) | (der) | deg)

ml m2 m3 IIZ4 m5 m6

1 (1211 5.45 |0.0354 +j 1.03}22.3 (20.6 | 7.4 | 270 | 270 | 270 | 270

1 {11 (31}1 1.44 .0395 +j 1.01} 4.35| 6.07[ 3.5 | 270 | 270 | 240 | 240
/6713711141313 .875 .0288 +j 1.03| 1.07 3.99L2.8 270 | 270 | 240 | 210
S SN T, R

*m, = 3, refer to Table 8.1 for definition of ml.'s, i=1,...7.

To - -0.0265 - settling time of six orbits.

1Optimum for entire row.

The resulting time responses associated with the optimum parameter set are shown in Figure 8.2.

Next, the parameter set and the required solar panel configuration information was inserted info
the variational inertia Floquet program listed in Appendix B. The sun angle p was spanned from 0° to
90° to consider the effect of the worst-case hinge angle. The program was run assuming each of the
panels to be flat plates of dimensions 10 ft x 5 ft, 7 ft x 7 ft, or 5 ft x 10 ft. The Floquet eigenvalues
for the perturbed and unperturbed systems are shown in Table 8.5. Computation time was 50 seconds.

For the sake of comparison, only the variational panel-associated inertia terms are considered in
the Floquet program. The spacecraft inertias must be altered accordingly to account for any panel-
associated constant inertia terms.

Finally, the output data of the optimization program, the magnitude of the magnetic moments of
the spacecraft and solar panels, and the orbit plane inclination angle are inserted into the variational
momentum bias Floquet program and the resulting eigenvalue sets are shown in Table 8.6. Computa-
tion time was 5 seconds.

Clearly, for the examples shown above, all of the comparisons were favorable.
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Figure 8.2—Time responses for optimum spacecraft for Example 2. 1.C. = ¢ = = 10° and all other system states are initially zero.
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Table 8.5-Results of variational inertia Floquet study Example 2.*

Floquet Magnitude TWorst-case Panel
eigenvalues of eigenvalues In [A;] /7€ sun angle p con}iguration
Aj |24l (deg)
—-0.909 +j .0889 0.91350131 —0.028797652 - no panels
.6027 +j .0939 .60997733 - .15735127
— .909 +j .0881 .91341377 — .028828155 Shaft
. e | 10
.6027 +j .0994 .61089151 — .15687457 0 .
— .909 +j.0935 191393573 —~ 028646314 Shaft | .
601 +j .0610 60454804 | — .16019717 90 |7
~ 909 +j.0982 191452856 ~ 028439907 Shoft] .
.5976 +j .0226 .59804089 — .16364192 90
10'
*m ~6,my=1mg=1,my=1mg=3 mg=3, andm, = 3. T Hinge Line

TLargest deviation of In [A1/7Qg from no-panel case.

Table 8.6—Results of variational momentum bias Floquet study Example 2.*

Magnetic Floquet Magnitude

moments eigenvalues of eigenvalues In ]/\il/ rQO
(103 pole-cm) A Al

|m0| = 0. 0.8167 zj .16166 0.83448030 —0.028798479

My, = 0. .3445 +j 1149 37266113 — .15709961

|my| = 3.96 .8187 +j .16163 .83450912 — 028792983

Myp = 5.0 .3544 +j .1152 37271575 - 15707629

*my=6,me=1,mg=1m,~ 1, mg=3, mg= 3, and mg = 3.
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APPENDIX A
DEVELOPMENT OF FULLY EXPANDED EXPRESSIONS

The following section includes the expansion details of the development presented in Chapter 2.

©gy = 39 (10w, + 25, (1Rw,, + 35,(13)w ), + ¥
wgy = a5, (2w, + 321(22)(u1y +a,,(23w,
Wgg = 83,(BNw , +25,(8w;, + 2353wy,
By = Ay, + Agy 0 |+ a
0 0
wgy = 351 (1@, + 35,(12)wy, + 25,(13)wy, + 35511y
gy = 83 (2Dwy, + a5, (22w, + a5, (2B, + 3551 + &
w3, = 85,80, + a5, (32w, + 25,(33)w,, + a5o(31)y
y

wy = A21a_)1 + A21w1 +1 0

0

Woy = gy (1w , + a21(12)m1y +ay,(1w,, + 85,10, + 2121(12)c2>ly t ay,(13)a,, +y
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d’éy =4y, (2D, + 85,(R0yy + 85,(28)0,, + 39, (R1)d,, + 85(2R)d, + 35,(23),,

Gy = 8918w, + 89y (82w + 85,33y, + 35 (B 1 + 85, (BR)0yy + 35, (3300,

il v o

(;)3 = A31Z_)1 + A31d)1 + A32 0|+ Agg 0|+
0 0 0

Gy = g (10 + 35 (12w + 85,(13)w, + 85, (1), + ag; (1R, + 35, (13)ay,

+ a,,(11)y + ag5(11)y

d’3y - é31(21)(‘)1x + 331(22)0)1)’ + 331(23)0)12 + 331(21)d)1x + 331(22)(2)1}, + 331(23)(2)12

+ago(R1)y + ag,(R1)y t @

Ggy = 831310, + 851 (8w + 853wy, + agy (BDéy + 353Dy, + 35,330y,

+ ag4(81)y + a5,(31)y

H, = 0,3,
Hiy =1 (Do, -~ (12w, - I(13)w,,
Hy, = -1,@Doy, + 1oy, - 1;(@3o,,
Hy,=-1,3D,, - 1,820, + 1,33y,
H =90,

Hy, =1, (106, - LR, - [1(13)a,
Hy, = -1, +1,@oy, - L(Rw,,

Hy,=-1,8Da, -~ 1,3ay, + 1;(33)dy,
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TS S mme e SN

Hy = Ay5Hg + 0,

Hox = 35510 Hg, + 255(12Hg, + 25513)Hy, + 1,41 [a5, (1001, + 85120y, + 35 (B)oy, + 7]

Hyy = 3g4@UHgy + 3552 Hyy + 255@B)Hy, + 1,22 [ag,(0y, + 35, @R)wyy + 29, ()0 2]

Hyy = 8gg(8DHa, + 25 (320H 3y + 25x(38)Hy, + 15(33) [, Doy, + 35,3y, + 85,(33)0y, |
Hy = AggHg + ApgHg + Do

Aoy = 255(11)Hg, + agg(12)Hy, + 255(13)Hy, + agg(11)Hg, + 2y5(12)Hg, + 24133,

t '2(11)[321(11)‘”1;{ +a9,(12)w )y + 85,(18)wy, + ¥ + 25 (110, + 85, (12)0 g, + 321(13)(2)12]

oy = dgg(@D)Hg, + a55(30Hy, + 455(23)H, + 8gg(R1)Hyy + ag5(2R0H ) + ay4(23)H 3,

2y
+ 15(22) [ (2D + 8y @Dy + 851 2By, + 85,1, + 8, (R + 25,2, |

Hy, = ap0(81)Hg, + 855(32)Hg, + 855(33)H g, + 2958z, + 255(32)H 5, + a,4(33)H 3,

+ 15(33)[ 2, (BDwy, + g, (3D + 45 (BB, + 3, (B0 1 + 8, (3R, + a5,(33)0,, |
H, = D0,
Hy, = 13(11)[332(11))7 +ag (1w, +ag,(1w;, + 331(13)0)12]
Hy, = 13(22)[‘3‘ T ago()y + ag,Rwy, + a3,RRw;y, + a31(23)“’1z:|
Hgy, = 13(33)[332(31))'/ +ag (3w, + a5,3Dw,, + a31(33)w12]

Hy - 0g0,

Hgy = 13(11)[5’32(11)5’ T agg(1)y + g, (10ay, + 85,(12)wy ), + 25,(13)wy,

+ag (106, + 85;,(12)b, + 35,13y, |
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Hgy = 1;(22)[d + ag5@1)7 + 255(R1)Y + 44, (@D, + 23,(BDw,, + 45,(2w,

+ a5, (1) 1y + 251 (2R, + 25 (23, |

Hy, = 1533)[a35B1)) + 25581 + 23, Doy, + 45y (3w, + 43, (33w,

+ag)(81)0y, + 2g;(32)dy, + 25,(83)d> 1, |

The left-hand side of Equations (2.4)is treated in the following development. To simplify the nota-

tion used throughout this development, let

Wiy =@y
@1y ~ P19
Wiz = Wy3

M
1t

>
i=1

T3y = H3y T g gy - w3xH32

Tyy = 15(22)[Sag (@D ; + Sag (20 y; + 4g,(R1)) + 2go(21)y +d |

+ 13(11) -1 535932

The rotor is assumed to be symmetric. T3X and T3Z are degenerate equations.

Tox = Hox + wgylly, — wg Hy,
Toy = Ip(11)[ag; (10w ; + Say (106 + 7]+ aos(1DI(11)[2g5(11)y + Sag; (Do)
+ 8y5(12)15(22) [.'1 + ag,(21)y + 2331(21)0)11.] + 323(13)13(33)[a32(31))'/ + Zay, (3D, 1.]
+ 323(11)13(11)[332(11)7 * ago(1)y + 2ag,(1Dwy; + 2"”31(11')‘2)11':]

+ ayg(12)13(22) [ + 8551y + aggR1)y + Sag, RNy, + Tag, @0 1]
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+ 855(13)15(33) [239(81)7 + 2558 + Sag;3Dwy; + Sag,(31) ;]
+ [Zag1@D0 | {1,688)[Zag; 3wy, | + 2556011 [age(1D)7 + Sag, (10w, ]

+ 2,5(32)5(22)[a + 355(21)7 + Zay, (20w ;| + 254(33)15(33) [25,(31)7 + 2331(31)0)11],

- [3204800,] 1522 Sa5, (20 ;| + 2gg@NIED agey + 2ag (1w

+ 255(22)15(@R)[a + 35521 + Zag (200 ] + 25,258 a3 + Zasl(si)wli]]

T2 y and T,, are degenerate equations. However, they are necessary to evaluate the constraint torques

acting on body 1.
Toy = Hyy + wy, Hoy ~ 0o Hy,

Tay = 152 Sty (200 + Say (20, | + ap5@DIAD) 251Dy + Sag, 1oy, |
+ 25 @224 + 2521y + Sag, @y | + 455@Ny(8)[2g5(3D)7 + Sag, (3D ;]
+ agg@DIZUD gy (1) + 25117 + Sag (1D, + Zag, (10é )
+ ap(2R)15(R2)[d + 83(R1) + 25(@1)) + Ty (2D, + Sag; (200 ;)
+ 254(29)15(33) [a55(8D)7 + 255817 + Shg (Biw, + Tag (3)a ]
+ [2a21(31)m“]{12(11)[y' + 2321(1i)w1i] + 323(11)13(11)[332(11» + 2331(11')w1i]
+ 2551215(22) [a + 255217 + 325,(2D)0 ;| + 255(13)15(33) (222307 + 2331(31')@11]}
. [y- ¥ 2321(11')(0“]{12(33)[2321(31')wu] + 323(31)13(11)[a32(11))} ¥ 2331(11')mu]
+ a55(32)15(22)[a + agg@1)j + Sag,@Doy; | + 254(83)15(33) [232(807 + Za5,(3Dey 1]]
Toz = Hoy + @oyH

H

z 2y T Yoy'lox

T,, = [,(33) [25121(31')@“ + Say (31)d 11.] + 323(31)13(11)[832(11)}'/ + 2a31(1i)mu.]
+ 4,4(32)15(22) [a + ag,(21)j + 2831(21')(011-] + 323(33)13(33)[332(31);'/ + 2331(31')@11-]

+ 323(31)13(11)[5132(11))'/ + ag,(11)y + Zag, (1w, + 2a31(11‘)(2)11-]

165



+2y5(8R)5(RR)) d + 255(R1)y + a55(R1)Y + a5, (2w y; + Zag, (RD)a 11‘]

+ 54(33)15(33) 435317 + 255307 + Sag (3w + Sag, (30

v [+ 2321(11‘)@11.]‘12(22)[2321(31')(0“] + agg@DIgAD] agyy + Sag(1Doy|

+ 2,134 + agg(2D)y + Sag,@oy;| + 25423139 (235307 + zasl(si)wu]]
- [Eazseoy] !12(11) [B20:(10y; + 7]+ 255101500 355107 + 325, |

+ag (12)14(22) [a + 2542105 + Sag, (2he 11.] ¥ 323(13)13(33)[332(31))'/ + Sag (3i)o 11.]]

Tyy=Hy + a’lyle - ("lely

Ty = LUDoy, - [,(1Do,, - (13, + 0,04, [11(33) - 11(22)]

- o1y [1BDo, + 1620, |+ oy, [hEDe, 1)@y, ]

le:Hly-I-wlZH le

1x ~ “ix
Ty = -L@D6, + (2o, - 1,(2)dy, + wlzwlx[ll(ll) - 11(33)]
- wlz[ll(l.%)wly + 11(13)0)12] tog, [11(31)a)1x ¥ 11(32)w1y]

Ty, =H,to ), o Hy

Tip= 130G, - [[8oyy, + 1,33)oy, + 00, [1,@2) - 1,(1)]

-0y [[1@Do 1 + L @oy, | + oy [1;02)0, + 1,030, |

The right-hand side of Equations (2.4) is treated in the following development. For this phase of

the study it is assumed that the disturbance torques T, equal zero.

Ty = 0
Tyy = 0
Ti3=10
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This assumption has been made because disturbance torque inputs cannot affect the stability of the

linearized model that shall be considered.

The remaining torque equation is

Tp =Tyt Tot Ty

The gravity-gradient torques for each of the three bodies are

where

where

and

Toy =

1,(22)

0

2
302

a2
Ty, = 305

Iy = @y + Ago®3ds,,

0 (Ca
0 +1 0
1,(33) Sa
-l -

I(11) + I3(11)

0

114039 - 1,22} 5,292, 39)|

{1322) ~ 15110} a5, (13)25,(23)
L —J

13 = <D3;

-Sa r13(11)

0 0

Ca
_

15(22) + I5(22)

[1533) + 1511) - 1322) - 15(22)}2,,(29)25,(33)|
{1511 - 15(33)}25,(19)2,,(33)

{1522) + I3(22) - 1;11) - 111 }ap (13)a,,(23)

0 0
I22) O
0 IaD

0 ;

15(33) + I5(11)
-

Ca

Sa
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and

— —

{1,33) - 1,@2)}a, (28)2,,(33) + 1, (12)2,(13)a,(33)

- 1,(18)a,, (13)a,,(29) - I;(23){a%,(23) - a%(33)}

{LaD - 1,63)}a, (192, (33) + 1,13){a3,(1) - a3, 33)]
T,, = 305 :
+1,(23)2, (19)a, (23) - 1,(12)a (28)a, (33)

{122) - Lan}a, (19a, (29) + 1,(a2){a3,23) - 23,013)}

+ 11(13)3 1r(23)511r(33) - 11(23)alr(13)alr(331
where

I, =0,.

The only constraint torques that must be considered are those acting on body 1. (See page 24.)

0 “219(12)Tg,y — 315(13)Ty,,

16 = Ayol Togy | =|721R)To,, — 315(@3) Ty, |

Toss d ~215(82)Tgyy ~ 315(33)Tyy,

L -

but

T = T T — T 0
where

T21 y = Tgy gravity-gradient torque
and

T22y = sz contro!l torque,
and

0
T24z = T2Z(RHS) - Toy, _}25:

where sz(RHS) and TQZ(RHS) appears on page A-5, Ty 1y and T, ,, appear on page A-7, and T22y and'

Tzzz appear on page 23.
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Finally,

Tgy = Ty~ ki [Tlés + 0y~ Toi— (H - Hb)CL] ~H_B, [See Equation (2.3).]
T,, = 302 [12(33) +I(11) - [,(22) - 13(22)] 2,,(23)2,,(33) - k,y - B,y

Ty = 393‘[11(33) - 11(22)] a,(23)a,(33) + I,(12)a,,(13)2,,(33) - I, (13)a,,(13)a,(23)

-1 1(23)["%(23) - a?z(33)]l +a,9(10kgy + Bgy) - 215(12) Ty — 315(18)Tpy,

T, = 393[[11(11) - 11(33)131,(13)alr(33) + 11(13)[a§r(13) - afr(ss)] +1,(23)a,,(13)a, (23)

. 11(12)a1,(23)a1,(33)} by @Ky + Byy) - 81,22 g, - 3,5(23)Ty,,

T,,= 393[ 1,(22) - 11(11)]3“(13)3“(23) +1,(12) Ea?r(zs) - a%r(13)] +1,(13)a (23)a, (33)

- 11(23)31‘_(13)3“(33), + 312(31)(kgy + Bg)'/) - 312(32)T24y -a,,33)Ty,,
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APPENDIX B

LISTING OF FLOQUET COMPUTER PROGRAMS FOR VARIATIONAL
PITCH-MOMENTUM BIAS AND VARIATIONAL INERTIA

The first listing presented is the main program used for both the F‘loq{let search detailed in Chap-
ter 5 and the validation runs associated with the variational pitch-momentum bias and pitch disturb-
ance torque runs referenced in Chapter 8. Appropriate changes noted within this program are used to
specify which of the two type of runs is desired. The two applicable subroutines are listed following
the main program.

The next listing includes both the main program and subroutine for use in the validation of the
variational inertia computer runs referenced in Chapter 8.

The user is free to insert into any of these programs any parameter set of his choosing. The re-
quired information will be available from the computer output of the optimization program detailed in
Chapter 6. In addition, the user is free to insert solar panel configurations of his choosing into the
variational inertia program.

Three subroutines are required for the execution of these programs. They are QREIG, QRT, and
HESSEN. These are available through the SHARE Program Catalog, SDA 3006-01, August 1964. Their

purpose is to solve for eigenvalues by the QR transform. The author of the program is F. P. Emad.
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IMPLICIT REAL*B(A-Hy0-2,4%)

REA. =4QMAT QRRQRI yRUUTRyROUTI
DIMENSTONQ(545)4P{848)9sX(898),Y(8,98),2(8,8),B(8,8),QH{8,8)
DIMENSION QMAT{10,10) yROUTR{100) ,ROUDTTI{1I00)

DIMENSTUN QQ(104+5,5)

C THE CARDS WITH(*) WERE USED IN THE FLOUOUET SEARCH DETAILED IN CHAPTER 5,
C WHILE THE CARD WITH{#x%*) WERE USED FUR THE VALIDATIUN MUMENTUM BIAS RUNS.

[aNeNe]

WRITE(645000)
WRITE(6,45001)
WRITE(64+5002)
WRITE(6,5003)
WRITE(6,45004)
5000 FUORMAT(' TWO SETS OF EIGENVALUES RESULT FUR EACH CASE COUNSIDERED,P
1ROBABAB.Y ONE WHICH IS USEFUL AND UNE')
5001 FORMAT(' WHICH IS NOTe IN THE FIRST SET, THE SYSTEM MATRIX IS NURM
1AL IZED BY 2 TU THE MPQ(MPE=3),AND In ')
5002 FORMAT(' THE SECOND,MPQ=8.AL SO, THE EXPUNENTIAL SERIES EXPANSION I
1S CARRIED OUT TO NSTUP=50 IN (1) AND ')
5003 FORMAT(' NSTOP=100 TERMS IN (2).THESE CUNSTANTS CAN B3E ALTERED IF
INEED BE FOR A PARTICUL AR PROBLEM')
5004 FORMAT(' COMPUTED UNDERFLUWS ARE EXPECTED ')
OMEGA=1.D-3

DO 32 NCASE=1,4 (%)
DO 32 NCASE=1,1 (%)
AST=ARBITRARY DISTURBANCE TORQUE AMPLITUDE IN FT LB SEC (=
WIN=ARBITRARY DISTURBANCE TORQUE FREQ IN RAD/SEC. (%)
DO 6555 MDQD=1,1

W=WIN (%)
W=0OMEGA (%33 )
DO 6888 MZ2Q=1,1

A=AST (%)
NSTOP=50

MPQ=3

DO 39 L.STP=1,2
9500 CONTINUE

FMPQ=2.D0%*MPQ
INTRV=4{(IF DISTURBANCE IS OF A SINGLE FREQ) (=)
INTRV=8 (%)
FINTV=INTRYV
IMU_T=INTRV~-1
DT=2.D00%3,14159200/ (FINTVEW=FMPQ)
ANG.E=.2D0
FSTOP=NSTOP+1
N=5
DO 11 M1l=1,INTRV
DO 10 1P=1yN
DO 10 JP=1,4N
PUIP4JP)=0.D0

10 Q(IP,JP)=0.00
DO 12 1P=1,4N

12 P(IP,1P}=1.D0

5 CONTINUE
WA=W*A (%)
CA,. QCA_C {(QsANGLEJNCASE,A,WA) (=)
CALL QCALC (Q¢ANGLE4NCASEyXMUXMXP) ( Hex )

DO 30 NDTLl=1,5

DO 30 NDT2=1,45

QINDT1,NDT2)1=Q(NDTL4NDT2)*0DT
30 CONTINUE

DU 14 1_5=1,4N

DO 14 Lo6=1,4N
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14

15

150
103

6969

6968
6960

33

11

22

120
23

42

41

Bl.54y.6)=Q(.5,L6)

DO 103 M=1,NSTOP

F=M

DU 8 L1=14N

DO 8 1.2=14N

QUL 1,L2)=Q(1,L.2)/F

POL1y.2)=P( 1yL2)+Q(L 1,4L2)

DU 15 L7=1,4N

DO 15 iL8=1,yN

QH(L7,.8)=0.00

DO 15 L.9=1,N

QH(L7,.8)=Q(L 7,L9)%B(L9,L8)+QH(L7,L8)

DO 150 L 7=1,4N '

DO 150 1.8=1,4N

Q. 7,.8)=QH(L 7,.8)

CONT INUE

DO 9 1. 1=1,4N

DO 9 L2=14N

QUL1,4,.2)=P(.1,L2)+Q(L1,.2)/FSTOP
FOR DO 148 ©DIVIDE DT BY 256

DO 6960 M=1,MPQ

DO 6969 L1=1,N

DO 6969 1.2=1,N

QH(L.1,.2)=0.00

DO 6969 L 3=1,N

QH(L1,L2)1=Q(L1,L3)*Q(L3,L2)+QH(L1,L2)

DO 6968 1_1=1,,N

DO 6968 L2=1,4N

QL1 y.2)=0H{L1,4_2)

CONTINUE
DO 33 1_1=1,N

DO 33 1L2=1,4N
QO(MLyL1,_.2)=0(_1,4L2)
ANGL E=ANGLE+2.D0%3,141592D0/FINTV
CONT INUE

DU 23 K=1,IMULT

DO 22 J1=1,N

DO 22 J2=1,4N
QH(J1,J2)=0.D0O

DO 22 J3=1,N

QH{J1,J2)=QQ(INTRV+1-KsJ1lyJ3)*QQ(INTRV-KsJ3,J2)14+QH(J1,J2)

DO 120 L7=1,4N

DO 120 _8=1,N

QOUINTRV=KsL 7,L8)=QHI(L 7,L8)

CONT INUE

DU 111 LL=1,N

DO 111 JJ=1yN

QILL v JJ)=QQ(1,LL yJJ)

QAMAT (Ll »JJ)=Q (L 4y JJ)

IPRNT=0

CA_. HESSEN(QMAT,N)

CALL OREIG(QMAT,N,ROOTR,ROOTI, IPRNT)
DO 9999 NMAG=1,5
XMAG=ROUOTR (NMAG) *%2+RU0OTI (NMAG) %%x2
XMAG=DSQRT ( XMAG)

IF(XMAG) 41441442

CONT INUE .
XLMD1I=D_OG(XMAG)/(6.283184D0/W)
XLMD2=(180.D0/3.141592D0)*ATANZ2(ROOTI (NMAG) yROOTR{NMAG))
CONTINUE
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1000 FORMAT{' MAG., OF LAMDA
ILN(LAMDA) /TT*IM IN DEGREES')

9001

3999
9000
2000

€C9505

9505

1101

C

2222

39

6888

6555

1
¢ GAM

32

WRITE(6,1000)
FORMAT(5E16.8)

WRITE(6,9001) XMAG,ROOTR(NMAG) 4ROOTI (NMAG)

CONTINUE

FORMAT (* DISTURBANCE
FORMAT(®' VEHICLE MAG MCM.
WRITE(6,9000)

FORMAT (* AMPL I TUDE
FORMAT(' FT. LB./GAUSS
WRITE(649505)

FORMAT (2018.6,13)
WRITE(691101)A, WeNCASE

(RE+IM)L AMDA(FLOQUET EGNVLUES)

DISTURBANCE CASE"*)
MAG MOM OF PANELS CASE')

FREQUENCY ')
FT. LB./GAUSS v)

WRITE(641101)XM0,XMXP¢NCASE

CUNTINUE
WRITE(6,2222)
FORMAT(1H1)
NSTOP=100
MPQ=8

COUNT INUE
AST=AST+.1D0
CONT INUE
WIN=WIN+.000200
CUNT INUE
CONTINUE
RETURN

END

SUBROUTINE QCALC (QesANGLEINCASEyAyWA)

IMP_ICIT REA_*8(A-H,U-Z)
DIMENSTON Q{5y5)
GO TO (1,24+3,4)yNCASE
CONTINUE

appears as p in the text.
GAM=8.D0

A_F=8.00

HO=-2.00
X12=200.D0

BG=.+5D0

XKG=.80-3
BETA=0.00

GO TO 20

CUNTINUE

GU TO 20

CONTINUE

GO TO 20

CUNT INUE

CONT INUE
SB=DSIN(BETA)
Ch=DCOS(BETA)
CSB=CB*CH
SSB=SB=*SH

C VARTATIONAL TERMS

A=DST GN(A,DSIN(ANGLE))
WA=DSIGN(WA,DCUS (ANGL E))

C SYSTEM A MATRIX
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Q(14y2)=1.00

QE2y1)=(1.D=3/A_F)=(4,0=-3%{1.0D0-GAM)+(HO+A)/XI1Z)

(RE+T*IM),

¢+ X_MD 1,XLMD 2

(*)
( ok )

(*)

(%% )

(%)
(%)



1-(SB*CB*(HO+A)*%x2)/ (ALF*XIZ¥BG*1.D3)
Q(24+2)=-SSB*((HO+A)*%*2)/(ALF*X]Z%*BG)

Q(293)= ((XKG—(HO+A)*1.D~3)*SB*(HO+A)/BG+CB*]1.D=3%(HO+A)=SB*WA)/
1AL F%XT12)

Q(2+y4)1=1.0~3%(1.D0+(1.00~GAM) /ALF)+((HO+A)-CB*SB*{ (HO+A)*%2)/BG)
1/ (A F*X1Z)

Q(2+5)=(SSB*(1.D=3)%(HO+A)*%2)/ (ALF*XI1Z2*%BG)
Q{3y1})={{1.0-3%(HO+A)/BG)*CH)

Q(3+2)=(HO+A)*5B/BG

Q(343)=((-XKG/BG)+( 1.D-3%(HO+A))/BG)

Q(3,4)=((HO+A)/BG)*C8B

Q(3+5)=-(1.0-3)%(HO+A)*SB/BG

Q491 )=({(HO+A)}*%2)/(1.D+3%BG*XIZ) )=*(~-CSB)
Q(4492)=(1eD-3)*(GAM=-1,00-A_F)={ (HO+A)+CB*SB*( (HO+A)**2)/BG)/XIZ
Q(443)=((XKG—{HO+A)* 1.U=3)%*CB*({HO+A)/BG-(CB*WA+SB*{HO+A)*1.D=3) )/
1X1Z

Qléy4)=({-(HO+A)*%2)/(X]Z%*BG))*CSB

Q(495)==(GAM=ALF}*1.D0-6+{ (HO+A)*1.D-3+CB*SB*( (HO+A)**2) %] .D~3/BG)/
1X12Z

Q(54+4)=1.D0

RETURN

END

SUBROUT INE QCA_C (QsANGLE4NCASEsXMQOsXMXP)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION Q(5,45)
C EARTH MAGNETIC MOMENT IN GAUSS FT FT FT
XME=2.845D21
C EARTH RADIUS PLUS URBIT ALTITUDE IN NAUTICAL MILES
R0O=4040,D0
C ORBIT PLANE INCL INATION ANGLE IN RADIANS
SIGMA=3,141592D0/6.D0
P1=3.141592D0
OMEGA=1.D-3
GO TO (1424y3454)4NCASE
1 CONTINUE
C EXAMPLE 1 4 UNPERTURBED
XM0=0.D0
XMXP=0.D0
C PARAMETER SET OF EXAMPLE 1
C GAM appears as p in the text.
GAM=2010.00/10.D0
AL F=+. 7T5D0%*GAM
HO=-2.5D0
X12=10.00
BG=.75D0
XKG=+33D-2
BETA=0,00
C WORST CASE ANGLES
2=1.571D0
T=1.571D0
GO TO 20
2 CONTINUE
C EXAMPLE 1 y PERTURBED
XM0=3,96D0%7.38D-5
G0 T0 20
3 CONTINUE
C EXAMPLE 2 4 UNPERTURBED
XM0=0.D0
XMXP=0,D0
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C PARAMETER SET OF EXAMPLE 2

C WOR

4

GAM=2200.D00/200.D0
ALF=2325.D0/200.D0
HO=-10.D0
XKG=1.D-3
BETA=0.D0

BG=.75D0

ST CASE ANGL.ES
T=4,71D0
2=4,71D0
XL AM=3.67D0
E=4.19D0
GO TO 20
CONT INUE

C EXAMPLE 2 5 PERTURBED

20

1001

1000

176

XMXP=5.,000%7.38D-5
XM0=3,9600%7.38D~5

CONT INUE

SB=DSIN(BETA)

CH=DCOS(BETA)

CSB=CB*CB

SSB=S5SB*SB

SLAM=DSIN(X_ AM)

CLAM=DCOS (X AM)

SE=DSIN(E)

CE=DCOS(E)

CZ=DCOS(Z)

SZ=DSINI(Z)

CT=DCOS(T)

SS=DSIN(SIGMA)

CS=DCOS(SIGMA)

XKMP=XME*XMXP/ (({RO*6076.,D0)%%3)%2,D0})
XKMO=XME*XMO /{(RO*6076.D0)*%3)
IF(XMXP)1000,1001,1000

CONTINUE

AlY=0.D0O

A2Y=0.D0

BlY=0.D0

B2Y=0.D0 .
GO TO 2000

CONTINUE

C23=DCOS(P1%23.5D0/180.D0)
$23=DSORT(1.D0-C23%C23)

SMU=CE*SS*CL AM=SE=*(CS*523-55xSL AM*C23)
CMU=DSQRT(1.D00-SMU*SMU)
CRO=DSQRT(1.D0-(3440.D0 /RO)==2)/CMU
ROZ=DARCODS(CRO)

SRO=DSIN(ROZ)

S2R0O=DSIN(2.D0O*R0OZ)

S3R0O=DSIN(3.D0O*ROZ)

S4RU=DSIN(4.D0*R0OZ)
SA=(CAME(SE*C23*CS+SE*S523%SS*SLAM )+SLAM* {SE*C23%SS*CLAM-CE*SS*SL

1aM))/CMU

CA=DSQRT(1.D0-SA=*5A)

AYO=XKMP*CMU*SS*CA

AY=-3 ,DO*XKMP*CMU*SS*CA
BY=3,DO0%XKMP*CMU*SS5*SA

AOY=(2.D0%AY0* (PI-R0OZ) +AY*(=-52R0))/PI
AlY=(2.D0%AYO*SRO+AY*(SRUO+S3R0/3.00))/P1



A2Y=(~AYO*SRO+AY*(PI-ROZ-S4R0/4.D0))/P1
Bly=BY*{SRO-S3R01/3.00)/P1
B2Y=BY*(PI-ROZ+S4R0/4.D0)/P1
2000 CONTINUE

C1l1=XKMO*C Z*SS
C12=-2.D0*XKMO*SZ*CT*SS
CUM=DSIGN(1.D0,DCUS(ANGLE))
SOM=DSIGN(1.00,0SIN(ANGLE))
S20M=DSIGN(1.D0yDSIN{2.D0*ANGLE) )
C20M=DSIGN(1.D0sDCOS(2.DO*ANGLE })

C VARIATIONA. TERMS
A= ((A1lY+C11)*SOM-(B1Y+C12)*COM+A2Y*S20M/2.D0-B2Y*C20M/2.D0) /OMEGA
WA= (ALY+C11)*COM+(B1Y+C12)*SOM+A2Y*C20M+B2Y*S20M

C SYSTEM A MATRIX
Q(1,42)=1.D0
Q(2y1)=(1eD=3/ALF)*(4.D-3%(1.D0-GAM)+(HO+A)/XIZ)
1-(SB*CB*=(HO+A)**%2) /(ALF*X12%BG*1,0D3)
Q(242)=—SSB*((HO+A)*%2 )/ (ALF*XIZ*BG)
Q{243)= ((XKG-(HO+A)*1,0-3)*SB*(HO+A)/BG+CB*1,0-3%(HO+A)-SB*WA)/
1A, F%X12)
Q(2494)=1.D-3*%(1.00+(1.D0-GAM) /ALF)+((HO+A)-CB*SB=( (HO+A)**2)/BG)
1/ CALFxX12)
Q(295)=(SSB*(1D-3)*({HO+A)%%2)/ (ALF*XIZ*BG)
Q(3,1)=((1l.D~-3%(HO+A)}/BG)*CB)
Q(3,2)=(HO+A)*58/8BG
Q(343)=((=XKG/BG)+( 1.D=33%(HO+A))/BG)
Q(3,4)=((HO+A)/BG)*CB
Q(345)==(1sD-3)*(HO+A)*SB/BG
Q(44e1 I=({(HO+A)*%2)/(1.D+3%BG*XIZ))*(~-CSB)
Q(442)=(1eD-3)*(GAM=1.,D0-ALF)=((HO+A)+CB*SB*((HO+A)*%2)/BG)/XIZ
Ql4,3)=((XKG=(HO+A}* 1.,D0-3)%CB*(HO+A)/BG-1CB*WA+SB*(HO+A)*]1,D0-3))/
1X1z
Qlay4)=({-(HO+A)*%2)/(XIZ*BG)) *CSB
Q(445)=—(GAM—ALF)*]14D-6+{ (HO+A)*1,0-3+CB*xSB*( (HO+A)**2)%1.D-3/BG)}/
1X12z
Q(544)=1.D0
RETURN
END

IMPLICIT REAL*B(A-Hy0-2,4%)

REA, *40QMAT,RR,4R1 » RUOTR,ROUTI
DIMENSIONQ(5,+5)sP(8+8)4X(898),Y(848)972(By8)+B(8,8),0H(8,8)
DIMENSION QMAT(10,10) +ROOTR{(100) ,ROOTI1(100)

DIMENSION QQ(10+4545)
200 FORMAT(' FOR THE PURPUSE OF COMPARISUN, UNLY THE VARIATIONAL PANEL
1-ASSOCIATED INERTIA TERMS ARE CONSIDERED')
WRITE(64200)
1005 FORMAT(!® THE SPACECRAFT MAIN BODY INERTIAS MUST BE ADJUSTED T
20 ACCOUNT FOR THE CONSTANT INERTIA ')
WRITE(6,1005)
L006 FORMAT (' TERMS ASSOCIATED WITH X111,X122,X1I33 AS THEY APPEAR IN TH
1E SUBPROGRAM QCALC?')
WRITE(641006)
5000 FORMAT(' TWO SETS OF EIGENVALUES RESULT FUR EACH CASE CONSIDERED,P
1ROBABABLY ONE WHICH IS USEFUL AND ONE?')
WRITE(645000)
5001 FORMAT(* WHICH IS NOT. IN THE FIRST SET, THE SYSTEM MATRIX IS NURM
1ALIZED BY 2 TO THE MPQ(MPOQ=3),AND IN ')
WRITE(6,5001)
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5002 FORMAT(' THE SECOND,MPQ=8.AL SO, THE EXPUNENTIAL SERIES EXPANSION I
1S CARRIED OUT TO NSTOP=50 IN (1) AND V)
WRITE(6+95002)
5003 FORMAT(*® NSTOP=100 TERMS IN (2).THESE CONSTANTS CAN BE ALTERED IF
INEED BE FOR A PARTICUL AR PROUOBLEM!')
WRITE(645003)
5004 FORMAT(?' COMPUTED UNDERFLOWS ARE EXPECTED ')
WRITE(645004)
OMEGA=1.D=-3
C 4 PANEL. CONFIGURATIONS HAVE BEEN ALLOWED FOR
DO 32 NCASE=1.4
C INITIALIZATION OF SUN ANGLE SCAN, MU=0.
XMU=0.DO
C SCAN OF MU IN 10. DEGREE INCREMENTS
DO 6555 M0QO=1,10
W=0OMEGA*2,D0
NSTOP=50
MPQ=3
DO 39 LSTP=1,2
9500 CONTINUE
FMPQ=2.D0%*%MPQ
INTRV=4
FINTV=INTRV
IMU_ T=INTRV-1
DT=2.D0%3.141592D0/ (FINTV*W*FMPQ)
ANG.E=.2D0
FSTOP=NSTOP+1
N=5
DO 11 M1=1,INTRYV
DO 10 1P=1yN
DU 10 JP=1,N
PLIP,JP)=0.D0
10 Q(IP,JP)=0.D0
DO 12 1P=1,N
12 PUIP,IP)=1,00
5 CONTINUE
CALLL QCALC {QsANGL EJNCASE, XMU)
DU 30 NDTl=1,5
DU 30 NDT2=1,45
QINDTLNDT2)=Q(NDTL.NUT2) =0T
30 CONTINUE
DO 14 . 5=1,N
DO 14 L6=1,4N
14 B(‘_Sy‘_6)=Q(-59L6)
DU 103 M=1,NSTUP
F=M
DU 8 Ll=14N
VU 8 .2=1,N
Q(L1,.2)=Q(_2,_2)/F
8 P(LLy.2)=P(1yL2)+Q(L1,y_2)
DO 15 I_7=14N
DO 15 i.8=14¢N
QOH(L 74L8)=0.00
DU 1% 1.9=1,N
15 QHIL 74L8)=QILT7,L9)%B(LIyLB)+QHILT7,L8)
DO 150 . 7=1,4N
DO 150 . 8=1,N
150 QU_74_8)=QHU.7,4.8)
103 CONTINUE
DU 9 _1=1,N
DU 9 1L2=1,N
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6969

6968
6960

33

11

22

120
23

42

41
1000

9001
9000

5101

1101

2222

39

Q(L1y.2)=P(.1,L2)+0(L 1,_2)/FSTUP
FUR DU 1,8 DIVIDE DT BY 256

DO 6960 M=1,MPQ

DO 6969 L1=1,4N

DO 6969 L.2=1,4N

QH(1L14.2)=0.D0

DO 6969 L_3=1,N
OHIL1,L2)=0(L1,L3)%Q(L3,L2)+QH(L1,L2)

DO 6968 _1=1.N

DU 6968 L2=1,N

QU1 2)=QHI(L1,.2)

CONTINUE

DO 33 1 1=1,N

DO 33 L2=1,N

QU(ML,y_14y.2)=0(_1,L2)

ANGL E=ANGLE+2.D0%3.141592D0/FINTV

CONT INUE

DO 23 K=1,IMULT

DO 22 J1l=1,N

DO 22 J2=1,N

QH(J1,J2)=0.D0

DO 22 J3=1,N

QH(J14J2)=00 0 INTRV+1-KyJleJ3)*QQUINTRV=-KyJ34J2)+QH(JI1+J2)

DO 120 LL7=1,4N

DO 120 .8=1,N

QOUINTRV=K oL 74L 8)=QHI(L 7,L8)

CONT INUE

DO 111 LL=1,N

DO 111 JJ=1,N

QL yJJ)=Q0( 141 yJJ)

OMAT (L1 »JJ)=Q (L1 y JJ)

CALL HESSEN(QMAT,N)

IPRNT=0

CALL QREIG(OMAT,N,RUUTR,RUUTI, IPRNT)

DO 9000 NMAG=1,5

XMAG=DSQRT { XMAG)

IF(XMAG) 41441442

CONT INUE

XLMD1=0D_O0G(XMAG)/(6.283184D0/W)
XLMD2=(180.D0/3.14159200)*ATAN2(ROOTI (NMAG) sROOTR(NMAG) )
CONTINUE

FORMAT (' MAG. UF LAMDA (RE+IM)L AMDA(FLOQUET EGNVLUES) (RE+T%*IM),

ILN(LAMDA) /T4 T*IM IN DEGREES!)

WRITE(6,1000)

WRITE(6y9001) XMAG,RUOOTR(NMAG)4ROOTI (NMAG) 4XLMD 1,XLMD 2
FORMAT (5E16.8)

CONTINUE

XMUD=XMU%*180.D0/3.141592D0

FORMAT (' SUN ANGLE IN DEGREES NCASE?')
WRITE(645101)

WRITE(6,1101)XMUDsNCASE

FORMAT (2XsD18Be642Xy17)

WRITE(642222)

FORMAT (1H1)

NSTUP=100

MPQ=8

CONTINUE

XMU=XMU+3.l41592UO/18.UU
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6555 CUNTINUE

32

CONT INUE
RETURN
END

SUBROUTINE QCALC (QyANGL E4yNCASEXMU)
IMP_ICIT REAL*8(A-H,0-7)
DIMENSION Q(b,5)

C PARAMETER SET FDR EXAMPLE 2.
C GAM appears as p in the text.

[aNel

1

GAM=2200.D0/200.D0
ALF=2325.D0/200.00
HB=-10.00

X12=200.D0

BG=.75D0

XKG=1.D-3

BETA=0.D0

GO TO (14293494)4+NCASE

PANELL CONFIGURATIUN PARAMETERS ARE AyByXM=MyXIYP=IYP,XIZP=17ZP AS
DEFINED IN CHAPTER 7.

CONT INUE

C NO PANEL CASE

2

A=0.D0O
8=0.D0
XM=0.D0
X1YP=0.0D0
XI1ZP=0.b0O
GO 70 20
CONT INUE

C 2 PANELS, EACH 10' HIGH BY 5* WIDE

3

A=3.00
B=2.50D00
XM=3,12D0
X1YP=6.5D0
X12P=1.36D0
GO T0 20
CONT INUE

C 2 PANELSy EACH 7 ' HIGH BY 7' WIDE

4

A=3,D0
B=3,5D0
XI1ZP=1.6D0
GO TO 20
CONTINUE

C 2 PANELS, EACH 5 ' HIGH BY 10' WIDE
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20

A=3,D0

B=5.D0

XIyP=1.36D0

XI1ZP=6.500

CONTINUE
C2TP=DSIGN(1.D0,DCOS{ANGLE))
S2TP=DSIGN(1.D040SIN(ANGLE))
SSTP=(1.D0-C2TP)/2.D0
CSTP=(1.D0+C2TP)/2.D0
STCTP=S2TP/2.D0

OMEGA=1.D-3
SSTPD=S2TP*0OMEGA
CSTPD=-S2TP*DMEGA
STCTD=C2TP*0OMEGA



e N el

[eEaNe]

[nEeNwl

o000

W IN MAIN PRUGRAM IS5 2 OMEGA
XMU IS TRANSFERED FROM THE MAIN PROUGRAM
SMU=DSIN( XMU)
CMU=DCOS(XMU)
S SMU=SMU*SMU
SB=DSIN(BETA)
CB=DCOS(BETA)
CSB=CB*CB
$SB8=SB*S8B
PANEL ASSEMBLY INERTIAS IN SPACECRAFT COURDINATES
VARIATIONAL EQUATION
XI11=(XIYP=X1ZP%SSMU-XM* (B*SMU)*x*2)*CSTP
ACTUAL EQUATION
XI11=(XIYP=X1ZP*SSMU-XM* (B%SMU ) %%2)%CSTP-+XM* ( (A+B%CMU ) **2+{B*SMU)
L*%2)+X12P
XI13=(XIYP-XIZP%*SSMU-XM*{B*xSMU)**2)*STCTP
VARIATIONAL EQUATIUN
X122=0.D0
ACTUAL EQUATION
XI22=XTYP+XIZP*SSMU+XM* (BXSMU ) *%*2
VARTATIONAL EQUATION
XI133=(XIYP-XIZP*#SSMU~-XM* (BXSMU) *%2)%SS5TP
ACTUAL EQUATION
XI133=(XIYP-=XIZP%SSMU~XM*(B%xSMU)*%2)*SSTP+XM* ( (A+B%CMU )*%2+(B*SMU)
L*%2)+X1ZP
PRIMED INERTIAS UF CHAPTER 7
XILP=A_F*X[Z+XI11
XI12P =GAM®=X1Z+XI22
XI3P=X[Z+X133
DERIVATIVES OF PANEL. ASSEMHL_Y INERTIAS
XIKUN=(XTYP=XIZP*SSMU~XM* (BxSMU)*%2)
XI11D=XIKON*CSTPD
XI130=XIKON*STCTD
XI330=XTKON*S5STPD
A==-SB*CB*HB+XI11D
B=UMEGA*{(XTIP+XI3P-X12P)+SSB*HB+XI 13D
C=CB*BG-SB*HB
D=4.,D0%UMEGA*OMEGA* (XI3P-X12P)+ SSB*UMEGA*HB+UMEGA#*X113D
E=UMEGA*OMEGA*XT13+0OMEGA*SB*CB=HB~UMEGA=XT 110D
F=XKG-HB*UMEGA
GC=~UOMEGA®(XI1P+XI3P=-XI12P)~ CSB*HB+XI1130D
H=SB%CH*HB+X 133D
P==5B8*BG-CB*HB
) RATHER THAN V IS IN THE TEXT
V=4, D0%UMEGA*OMEGA*X] 13+SB*CB*HB*UMEGA+UMEGA®X]1 33D
R=UMEGA* CSB*HB-UMEGARUMEGAR (XI2P-X11P)~UMEGA=RXT13D
S=X13P*C+X[13x%pP
T=X11P%P+X113%C
CK==1.DC/(XI13%XI13=-XI3P*XI1P)

C SYSTEM A MATRIX

—
e

~

Q(ly2)=1.00

QU241 )=CKx( XI3P*D+XI13%V+S%CB*0OMEGA*HB/BG)
Q(242)=CK*{ XI3P*A+XI13%G+SxSB*HR/BG)
Q(243)=CK*(XI3PHCBXXKG=XT13%xXKG*SB=S*F/HG)
Q(24+4)=CK*=(XI3P*B+X[13%H+S*CB*HB/BG)
Q(245)=CK*=(XI3P*E+XI13*%R-S*HB*SB*UMEGA/BG)
Q{(3,1)=CB*OMEGA%HB/BG

Q(3,2)=HB*S58/8BG

Q(343)==F/BG

Q(3,4)=CB*HB/BG

Q(3,5)=—-HB*SB*UMEGA/BG
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Q4,1 )=CK*(XI13%D+XI1P*V+T*CB*OMEGA*HB/BG)
Q(442)=CKx{XI113%A+X]1P*G+T*HB*SB/BG)
QU4,3)=CK=(XI13%CBEXKG=-XT1P*XKG*SB-T*F/BG)
Q{444)=CK*(XI13%B+XI1P*H+T*CB*HB/BG)
Q(445)=CK*(XT13*E+XI1P*R-T*HB*SB*0OMEGA/BG)
Q(5,4)=1.D0

RETURN

END



APPENDIX C

DERIVATION OF THE RESIDUAL MAGNETIC DISTURBANCE
TORQUE MODEL

Before proceeding with the development of the magnetic disturbance torque model, it is necessary
to define the coordinate frames pertinent to this discussion.

First, consider the coordinate frame shown in Figure C.1. This figure defines the orientation of
the ecliptic plane with respect to the equatorial plane. The line of intersection of the planes defines
the vernal and autumnal equinoxes. The angle between the planes remains constant and is 23° 27'.
The angle ¢« defines the position of the sun with respect to the vernal equinox as the sun travels in the

ecliptic plane.

X r=| 7r defines the ecliptic plane coordinate axes,

and

X = Ve defines the equatorial plane coordinate axes.

The ecliptic plane normal is defined by the positive z g 2xis, and the equatorial plane normal is defined
by the positive z, axis.

Second, consider the relationship between the orbital and equatorial planes as shown in Figure C.2.
The angle o defines the angle of orbit inclination and is measured between the orbit plane normal and
the north spin pole axis, the positive z e 8%is. The angular position of the vehicle relative to the as-
cending node, the point where the vehicle passes from the southern to the northern hemisphere, is de-
fined as Qot where (1, is orbit rate and ¢ is time. The angle A defines the position of the ascending

node relative to the vernal equinox.
X - Y, defines the orbit plane coordinate axes.

The orbit plane normal is defined by the positive z, axis.
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North Spin Pole
. 1 Z, Normal to Equatorial Plane

Normal to Ecliptic Plane

Position

of Sun
Ecliptic Plane \
Equatorial
Vernal Plane
Equinox

Figure C.1-Orientation of the ecliptic plane relative to the equatorial plane.

North Spin Pole

A Orbit Plane

Orbit Plane Normal

Vehicle
-~ Position

Vernal -~
Equinox
Ascending
Node Equatorial Plane

Figure C.2—Orientation of the orbit plane relative to the equatorial plane.
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Third, it was assumed that the spacecraft is under perfect control so that the spacecraft coordinate
axes are coincident with the orbit reference coordinate axes defined in the beginning of Chapter 2. That

is, the spacecraft coordinates

X, spacecraft roll axis
Xy =] ¥ |=| spacecraft pitch axis
Zy spacecraft yaw axis

are coincident with the orbit reference coordinate axes

Xy

>

r= Yr

Zr

In general, the torque due to a residual magnetic moment, T ;, can be written as T4 =M x B,

where M = magnetic moment vector and B = earth magnetic field vector.
It has been assumed for the purposes of this study that the angle between the geographic and geo-
magnetic north pole is zero. Accordingly, the components of the earth’s magnetic field vector can be

expressed in terms of spacecraft coordinates (Reference 10) as

B .o
B, -
0 Byo
BZ0
where
.'7.‘0
By - — (S0CQq)
r
0
m
e
Byo - -—rg—(CO') .
0
and
me
B, = 703— (2808Q)

185



where m , = the magnetic dipole moment of earth in G-ft3 and Iy= the orbit radius from center of the

earth.

Consider the class of spacecraft without driven solar panels. If the magnetic moment vector for

the spacecraft alone is defined as

M 20_]
it is a simple matter to express the disturbance torque in terms of its components:

TdO:mOXBO R

where
TdXO
TdO = Tdyo
szo
or

my, (2SUSQOt) + M4 (Co)

=]

e

m 4o (80CQt) ~ m . (2805Qt)| - (C.1)

— My (SaCQOt) ~ My (Ca)

[=9
o
tt
-~
ow

For this case, the disturbance torque Td = Tdo, and T 4, and T 4,, the two components of interest,

can be written directly in terms of their frequency components:

m e
Tax= — [(m;Co) + (2m 7089030 |
0

m
e
T4, = r_3 (- my,Co) + (- myOSa)CQOt]
0

Next, consider the class of spacecraft with driven solar panels. Since the panels are normally
fabricated from nonferrous materials, it is assumed that the only disturbance torque component with
which we must concern ourselves is that resulting from a constant current distribution on the panel

faces themselves.
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The solar panel assembly is detailed in Figure C.3. Where the panel assembly coordinate axes

are defined by

The panel face normal is defined by the x , axis, and the Yp axis lies in the plane of the panel face and

b

is perpendicular to the panel hinge line at its intersection with the panel shaft. z_ is parallel to the

p
panel hinge line and perpendicular to both Xp and y e These three axes form a right-handed coordinate
system. The ip axes originate from the center of the solar panel shaft. The distance between the
spacecraft center of gravity and the panel hinge line measured along the y axis is a. The distance
between the panel hinge line and the panel center of gravity is b. The smallest angle measured be-

tween the panel shaft line and the y , axisis u. The angle measured between the z, and z, axes is 0.

p

The driven panels are assumed to have two degrees of freedom, one about the panel shaft, which is
located along the spacecraft pitch axis, and one perpendicular to this, along the panel hinge line, as
shown in Figure C.3. The two degrees of freedom make it possible to align the solar panels so that
the solar cell faces are always normal to the spacecraft-sun line, a line drawn between the spacecraft
and the sun. The energization of the cells by the sun produces the constant current distribution with
which we are concerned.

When the solar panels are normal to the nonocculted spacecraft sunline, the magnetic moment m,
due to the constant current distribution on the panel face and expressed in solar panel assembly co-

ordinates X_ is

Xp
m -|0
p
0
@ Hinge Line,
e / N
e
\e\-\ocb |—a — I !
A Zp <-Solar Panel
(a) N s ] i olar Fane y Solar. Shaft Solar (b)
Yo //A P 1Panel Panel
Spacecraft | p
Pitch Axis Shaft Vp xp p

Figure C.3-Solar panel assembly, (a) view looking down panel hinge line, and (b) view normal to

shaft and hinge line.
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When the earth occults the sun, m_ = 0. The resulting disturbance torque in spacecraft coordinates is

14
T. = mg, X BO, where m p is the moment expressed in spacecraft coordinates. For this class of

dp
spacecraft, the total magnetic disturbance torque is T ;= T;q + T dp-

To detail T dp’ it is first necessary to transform m, from panel coordinates into m p in spacecraft
coordinates. For ease of manipulation, it will be assumed that since the vehicle under discussion is
in earth orbit, the spacecraft-sun line and earth-sun line are coincident. The problem of occultation
will be considered separately.

It can be demonstrated that if the hinge angle p were adjusted to equal the angle that the earth-
sun line makes with the orbit plane and if the proper initial reference angle of the solar panel shaft
were chosen, then the sunline will always be kept normal to the panel face if the panel assembly is
simply rotated about its shaft at an angular velocity of QO. The solar panel assembly transformation
rotational sequence from panel assembly to spacecraft coordinates, therefore, was chosen to be first a
negative u rotation about the hinge line parallel z p and second a negative @ p rotation about y p the
axis of the shaft. The negative rotations must be performed to negate the effects upon the solar panels
of the sun angle and the spacecraft angular position in orbit. The negative Op rotation must be per-

formed because the spacecraft rotates once about its pitch axis each orbit.

X Co, 0 86,1 [Cu -Su 0f]x,
X’O:yozo 10 ||Se Cu Ofly,|.
z, - sep 0 cep 0 0 1 z,
or
Xg CGPC,L - CGPS# SGP X,
Xﬂ = yO = SI‘L C.“L 0 yp ’ (02)
Zy —SGPCIJ. SGPS;L cep z,
where
p = angle between the earth-sun line and the orbit plane,
ep = epo + Qot and is the angle between the z, and z, axes,
Gpo = initial solar panel shaft reference angle,
and
QO = orbital velocity.
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It is assumed that 4 remains constant during any particular orbit. After transformation,

COCx  ~COSp 86, | |m,,

Su Cu 0 0

-86,Cu SO8:  Co,|| 0

where mg, is the magnetic moment due to the solar panel assembly in spacecraft coordinates.
CGPC;L
mop = mxp S;L
—SepCp
Finally
po =My, % BO
where
dep
po N Tdm
szp

or

(28u80)SQt + (— CuCa)S(8 g + Lt

[~ CusoS(6, + @t)]CQqE + [- 2CuS0C(8, + At ]St
(- SUS;L)C‘u.Ot + (- C#CU)C(GPO + Qot)
The components pertinent to this discussion are

T gxp = (28uSa)SQt + (= CuCa)S(0 5 + 2ot

and

T gzp = (- 3081)CQt + (= CuCo)C(0, + t) -

(C.3)

By superposition the total disturbance torque caused by spacecraft alone plus the solar panel assembly

is Td = TdO + po
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C.1 Derivation of the Sun Angle
Reference is made to Figures C.1, C.2, and C.3. Define 2n as the orbit plane normal unit vector,

§ as the earth-sun line unit vector, and

)

P

Il

<
@

2

)"

ol

where X, is a set of unit vectors coincident with X,. Expressing § in terms of X, coordinates,
S = Cex, + Se(C(23°27')y, + (28°27)z,,) .
Similarly,
Z_ =So (- CAx, - SAy,) + Coz,.
The unit vectors S and Z ,, are shown in Figure C.4, and the sun angle u can be calculated by forming the dot

product s - Zn.

-~ A o _

§-Z =C(90" +u)=- Sy,

or
S -Z, = - CeSoC\ + Se[CaS(23°27") ~ SaSAC(23°271)],

and
Su = CeSoCA - Se[CoS(23°27") - SoSAC(23°27)]. (C4)

2n Orbit Plane Normal

+— Projection of Sunline
Onto Orbit Plane

§ Sunline

Orbit Plane

Figure C.4—Definition of sun angle.
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C.2 Derivation of the Solar Panel Reference Angle
Reference is made to Figure C.5. The two degrees of freedom associated with the solar panel assembly
allow the Xy, axis to be adjusted so that it is parallel to the sunline vector S. The spacecraft positive roll axis lies

along the spacecraft velocity vector.

If the ascending node is expressed in terms of the equatorial plane coordinates,
X, =(CAx,+ S)2,).

1

Then,

Algebraic manipulation yields the result

and further

[C)\ (Se C(23°277) Co + 8¢ S(23°27%) So SA) + SA (8¢ C (23°27") So CA ~ Ce So S/\)]
Co . = _
p0 . (05)
Cu

> Orbit Plane Normal

Spacecraft Roll Axis

0 ,é Sunline

p9 prdiusfed to Be Parallel to Sunline
X, Ascending Node

———— .

Xea

~

S x Zy (In the Orbit Plane and
l§ X an Normal to the §, én Plane)

Figure C.5-Definition of initial solar panel reference angle. § is not necessarily in the

orbit plane.
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C.3 Consideration of Umbra Effects
When including the disturbance torque due to driven solar panels, attention must be given to the
consideration of the umbra, that portion of the orbit during which the sun is occulted by the earth. This
portion of the orbit is defined by the umbra half angle ¢,

In Figure C.6, the x and y axes are orthogonal and fixed in the earth. They are not necessarily
coincident with the x e andy o AXes. The orbit plane is arbitrarily rotated about the x axis through an
angle p’, where y "= 90°— p. R is the radius of the earth, and h is the height of the spacecraft path
above the earth.

Assume that the sun is located along the z axis and above the x, y plane. For the orientation
shown, the sunline is perpendicular to the orbit plane and p = 90°. If p”is defined as 90° — p, it is
apparent that for p“= 0, no umbra exists. As p”is increased from zero by rotating the orbit plane
about the x axis, the projected length R, measured along the y axis on the orbit plane finally reaches
(Re + h) and the earth begins to occult the sun. As p”is increased past this point, the projected
length R, measured along the y axis on the orbit plane exceeds (R, + h). It is for this situation that an
umbra of finite duration exists. The half umbra angle , is measured from the y axis in clockwise direc-
tion to that point at which the R o Projected length onto the orbit plane equals R, + h). For the min-
imum value of p” for which occultation occurs,

R+ Cp, =R,
or

Path of

Spacecraft

Earth

Figure C.6—Definition of half umbra angle.
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If corresponding radials are drawn both on the earth cross section and on the orbit plane of Fig-
ure C.6 before the rotation of the orbit plane through the angle p°, then after an x rotation of the orbit

plane, the angle between any two of the corresponding radials can be defined by the angle v as a
function of ¢ and . It can be shown that Cv = \J 1-C2¢ 8% and for =0, Cv =Cy".

For p”> ‘“1;1' the half umbra angle can be computed as

(R,+mMCv=R

e
or

Re )"

e+h/

1-C2%¢s2")=
( ¢ 8% (R

For £ = 0, there is a minimum " defined by

R 2

e
2 a2
(1-8%9=C% ‘<Re+h>

as before. After rearranging terms,

but S (90° — ) = Cp, so

where R and h are constant, and p is the angle between sunline and orbit plane.

Clearly, if orbital precession is neglected during any one orbit, the waveform corresponding to
the incident solar energy on the solar panels is periodic at orbit rate. This means that dep and
szp can be expanded into a Fourier series whose basic frequency is orbit rate. Furthermore, the
resulting Fourier coefficients can be used to evaluate the previously discussed steady-state response

function R with respect to the magnetic disturbances produced by the solar panels.
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C.4 Umbra-Associated Disturbance Fourier Coefficients

The nonocculted x and z components of T dp 1€ rewritten in the following manner.

T
d
— = (251 80) 8 (g + Qo) + (= C Co) 8 (g + O, + Qt)

Myp my/ry

,szp
g = (- 80/ 5) C (ag + Ot) + (- Cpx Co) C (ag + Bpg + )
mxp me l‘o

The phase angle a; was introduced to allow for the convenience of working with an umbra

centered at # radians for all ¢ and A. A plot of incident sun energy on the solar panels versus space-

craft position in orbit is shown in Figure C.7.

Incident
Solar Energy

<

(m - ¢y) T (7 + ) 2r

Figure C.7-Plot of incident sun energy versus orbit position.

The angle a is the angle between the ascending node and the projection of the sunline onto the
orbit plane. As can be seen in Figure C.5, (e + GPO) = 90° For ay = 0, the projection of the sunline

onto the orbit plane is coincident with the radial that defines the ascending node. The angle o can
be evaluated simply,

Cay =C (90 —Gpo) = S@po
and

Sag =S (90°=0,0) = C6q-

After expanding dep and szp and making the required trigonometric substitutions,

T
dxp  _
——— =(28uS0S a; - CuCo)CQyr + (28uSoCa,) St (C.7)

mxpme/ro
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and

T
dzp _
3 (—SoSuC ao) CSZOt + (SoSpSoz0 + CuCo) SQOt. (C.8)

mxpme/rO

For simplicity, these equations can be rewritten as

dep = A,CQyt + B SQyt (C.9)
and
szp = A,CQur + B,SQt. (C.10)
The function f(¢), used for analytical expression of the effect of the umbra upon these torque equations, is
defined as
1 0 < Qy <(m-%,)
F) =40 (m-¢y) < Qut < (7 + §p)
I (m+§5) < Qyt <2
Then,
HO. [ o] oo
. 1 -
Tfip = £(1) le.p = - + Z a, Cnlyt + Z b, SnQyt, fori=x,z, (C.11)
n=1 =1
where
| ™
aol. = 7—_{- j TfI[JdQOt’
g
I T
@y = o f TﬂanQOt dQOr,
and

|-

i

T
j; TﬁpSnQ‘OI ont .
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The resulting Fourier coefficients are

ag; = 24,850 /7,

A, S(28,)
ali =_ﬂ. (ﬂ'_go)_ D) s

4, S(3¢,)
%073 )

11

a4y

. A; S[(l —n)§0] S[(l +n)§'0:|
4y = () —{ﬁ e AL
B, S(28,)
b1i=—7r(7r—§0)+ ) >
B, SG3
b21 = 7[55-0 _%é—_(_)_)} ,
B |S[(1-n)¢ S[(1+n)¢
b, = (‘l)”?[ [(1 ) 0] - [(1 ) 0:I}for n=2.

The resulting Fourier expansions are

p = a—gx + aGCQot +a, C2Qut+ .. . ta, CnQOt
+ b SQut + by 8200t + ...+ b Snflyt (C.12)
and
20,
szp = + a]ZCQOI‘ + azZC2QO[ + ...+ a”ZCnQOz‘
+b, SOt + b, S22t + ...+ b, SnQt. (C.13)
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APPENDIX D
LISTING OF THE OPTIMIZATION COMPUTER PROGRAM

In the computer listing shown, the program has been set up to run the search for the no-solar-panel
case described in Chapter 8. The solar panel case, illustrated by Example 2, can be repeated by in-
corporating the changes noted within the computer program itself. Furthermore, the user is free to in-
corporate any parameter array of his choosing. This parameter array must include the orbit altitude
and orbit inclination angle and may, for the solar panel case, include the location of the sun in the
ecliptic plane, and/or the location of the ascending node relative to the vernal equinox. Zero mag-
netic moment for the solar panel assembly (XMXP = 0) tells the program that the user is interested in
the no-solar-panel case.

The following fouwr subroutines are required for the execution of the optimization routine:

(1) PRBM. This subroutine is available through the ‘‘System/360 Scientific Subroutine Package
(360A-CM-03X) Version III Programmers Manual,’’ page 191, IBM H20-0205-3. The subroutine is a
polynomial solver.

(2) QREIG.

(3) QRT.

(4) HESSEN. Subroutines 2, 3, and 4 are available through the SHARE Program Catalog, SDA
3006-01, August 1964. Their purpose is to solve for eigenvalues by the QR transform. The author of

the SHARE program is F. P. Emad.

IMPLICIT REAL*B8(A-H,U-2)
REA, *& COEXyYyPUL yDAMyDAMP 4 DAMM
DIMENSTION CSVI6),,CHLI6)CCHIEB),,CH5AVIE)
1000 FORMAT(D12444+2E1244,4371544D12.4)
2000 FORMAT{1H1)

20 FORMAT(* R IN RADS.-RE AND+IM PARTS UF DLUM. SYSTEM PARAMETE
1R SETS TAU ZETA EPSTLUUN LAMDA ')

21 FORMAT(* SYST RUOUT NRMLZD BY.001 M7 M1 M2 M3
1M4 M5 M6 ANGL ES ARE IN RADIANS v)

10 FORMAT (! RMS RULL RMS YAW RMS GIMBAL ERRO

1RS IN RAUIANS ')
C RESIDUA. SPACECRAFT MAGNETIC MUMENT IN FT LB / GAUSS
XM0=3.96D0*7.,380-5
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[aEaNel

[aNaNel

[aNel

198

RESIDUA. MAGNETIC MOMENT OF BOTH PANELS IN FT LB /GAUSS
XMXP=0.D0
USE FOR SO_AR PANEL CASE
XMXP=5,D0%7,380-5
DAMM=1/TM=MAXIMUM SETTLING TIME IN SECONDS
DAMM=,0265D0
IF PROGRAM PRINTS OUT N1=0, NU PARAMETER SET WAS ABLE TO MEET THE DAMPING
REQUIREMENT
USE (%) FOR NO SOLAR PANEL CASE, AND (%%x) FUR SO.AR PANEL CASE
N1=0
L1=NU. OF INERTIA DIFFERENTIALS
Li=6
DO 171 M1=2,L1,2 (%% )
DO 171 Ml=1,L1 (%)
SQ=1.012
L7= NO. OF YAW INERTIAS
L7=3
DO 177 M7=3,L7 (k)
DO 177 M7=1,L7 (%)
L2= NO. OF RATIOS
L2=5
DU 172 M2=1,1
DO 172 M2=1,02
L3= NO. OF GIMBAL AXIS ANGLES
L3=5
DO 173 M3=1,L3,2 (x%x)
DO 173 M3=1,L3 (%)
L4= NO.OF MOMENTUM BIASES
La=12
DO 174 Mé=1,L4
L5= NO. OF DAMPING RATIOS
L5=3
DOL75 M5=1,L5
L6= NO. OF SPRING CONSTANTS
L6=5
DO 176 M6=1,L 6,2 (%)
DO 176 Mb=1,L6 (%)
CALL CMPUT(SQR,DAMP M7 4M1 M2y, M3,Mb, M5, M6, TS,ZS,EPSLSyXLAMS,CSV,
1DAMPF yCFyX1Z yXMXP,XMO)
IF(DAMP ~DAMM) 176,176,178
178 CONTINUE

SCALE SQRT(WEIGHTED MEAN SQUARE ERROR FCN) FDR VARIOUS YAW INERTIAS
SQR=SQR/(XIZ*1.D=6)
IF( SQR -SQ117941764176
SOQRT(WEIGHTED MEAN SQUARE ERRUR FCN R )
179 SOQ=SQR
SAVE MINIMUM VA_UES ASSOCIATED WITH MINIMUM WEIGHTED MEAN SQUARE ERROR
NEGATIVE OF RFEA. PART QOF DOMINANT SYSTEM ROOT/ .00l
DAM=DAMP
N7=M7
N1=M1
N2=M2
N3=M3
N&=M4
N5=M5
N6=M6
WEIGHTING FACTORS DEFINED IN CMPUT
CCF(2)=CF(2)
CCF(4)=CF(4)
CCF(6})=CF(6)

3 3t
- 3
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c

c

c

3 COMPONENTS OF WEIGHTED ERROR
CSAV(2)=CSV(2)
CSAV(4)=CSV(4)
CSAVI(6)=CSV(6)
DAMPED NATURAL. FREQ. OF DUOMINANT SYSTEM ROOT/.001
DFREQ=DAMPF
YAW INERTIA
XI=X1Z
176 CONTINUE
175 CONTINUE
174 CONTINUE
173 CONTINUE
172 CONTINUE
177 CONTINUE
WRITE(6,20)
WRITE(6421)
WRITE(6,1000) SQ +DAM,DFREQ.N7,
INLaNZyN33N4yN5,N6
29TSyZSyEPS.S XL AMS

CSCALE SQRT(MEAN SQUARE ERROR) COMPUNENTS FUR VARIOUS

DO 4000 KSV=2,6,42

CSAVIKSV)=(DSORTICSAVIKSV)/CCHIKSVY)/IX] *1.D-6)

4000 CUNT INUE

OO0 n

3000 FORMAT(3D1l8.6)
WRITE(6,10)
WRITE(6,3000)CSAV(2)43CSAV(4),CSAVI(6)
WRITE(6,2000)
N1=0
171 CONTINUE

RETURN
END

YAW INERTIAS

)

SUBROUT INE CMPUT(SQRyDAMP yM7 4MLyM24M3,M&yMbyME,TSsZSsEPSLS s XLAMS,

LCSVyDAMPF oCF 9y XTZ 43 XMXP 4y XMO)

IMP_ICIT REAL%8(A~H,0)-2)

REAL *40MATyRRyR1 yROUTR,RUUTI
REA. %4 CUE+X,Y,PUL yUAM,UAMP

REAL =4 ZETA

DIMENSION QMAT (10,10) yCEI(3,4,6)4SQ0R2(6)

DIMENSIUN E(3),C(6),CF(6),CSVI6)4X1Z25(5),DIFFR(6)

DIMENSTION A{646) D169 ALIT)yBETA(L)}RATIU(5)yHALLL)+BGI6)H»QG{(9)

DIMENSTON COE(LL) o X(11)yY(11),P0L(11)
DIMENSION TMX(3)yZMX{3) 4 XMAX(3)
BYPASS OPTIMIZATION OF LAMDA LEPSILOUN, ZETA,AND TAU

RYPASS IF 0O, DON'T BYPASS I1F NUT NFGL1=L AMDA,NFGZ=EPSTLON,

NFG4=TAU

USER MUST DEFINE ANY BYPASSEUD ANGLES AT THIS PUINT
NFG1=1
NFG2=1
NFG3=1
NFG4=1

MAGNETIC MOMENT OF EARTH IN GAUSS FT FT F1
XME=2.845021
F=3.,14159200/180.D0

ACCURDING TU NFG1 THRU 4
FOR SPACECRAFT WITH SOUL AR PANEL.S. IGNUR FOR NU SO.AR PANEL CASE.

(IN RADIANS)

USER CAN SUPPLY ANY 3 WEIGHTING FACTORS--- CF(2)=CPHI,y CF{4}=CPSI,

CF({2)=1.00
CF(4)=1.00
CF(6)=1.D0

NFG3=ZETA,

CF{6)=CGAM
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C USER CAN SUPPLY UP TO b VALUES UOF YAW INERTIA IN FT LB SEC SEC
X12S(1)=10.D0
X125(2)=100.D0
XIZ2S(3)=200.,D0
C USER CAN SUPPLY UP TO 5 VALUES OF GIMBAL AXIS ANGLE IN RADIANS
BETA{1)=0.D0
BETA(2)=22.5D0%F
BETA(3)=45,D0%F
BETA(4)=6 7.5D0%F
BETA{5)=30.,DO*F
C USER CAN SUPPLY UP TO 6 DIFFERENTIAL INERTIAS IN FT LB SEC SEC
DIFFR(1)=50.D0
DIFFR(2})=100,.,00
DIFFR{(3)})=250.D0
DIFFR(4)=500.,D0
DIFFR(5)=1000.D0
DIFFR(6)=2000.D0
C USER CAN SUPP_Y UP TO 5 INERTIA RATIQOS
RATIO(1)=.,75D0
RATIO(2)=1.D0
RATIO(3)=1.333333D0
C USER CAN SUPP.Y UP TO 12 MOMENTUM BIAS VALUES IN FT LB SEC(H IN PRGRM=-HA)
HA(1)=10.D0
HA{2)=5.00
HA(3)=2.5D0
HA(4)=1.D0
HA(S)=.5D0
HA(6)=.1DC
HA(7)=-.1D0
HA(8)=-.5D0
HA(9)=-1.D0
HA(10)=-2.5D0
HA(11)=-5,D0
HA(12)=-10.D0
C USER CAN SUPPLY UP TO 9 SPRING CONSTANTS IN FT LB / RADIAN
QG(1)=1.D-4
QG(2)=.33D-3
QG(3)=1.0-3
QG(4)=,.33D-2
QG(5)=1.D-2
C USER CAN SUPPLY UP TO 6 DAMPING CUNSTANTS IN FT LB SEC/ RADIANS
BG(1)=.25D0
BG(2)=.5D0
BG(3)=.75D0
C DEFINITION OF NORMAL IZED PARAMETER SET
H=HA(M&4) /(XIZS(MT)x%x1,0=-3)
H=-H
Q=QG(M6)}/(X1Z2S(MT)=%1.,D=-6)
C STABILITY CHECK
TF(Q-H) 7,748

7 SQR =1.D12
DAMP =0.
GO TU 6

8 CONT INUE
B=BG(M5) / (XIZS(MT)*1.0L=-3)
SB=DSIN(BETA(M3))
CB=0COS{BETA(M3))
CSB=CB*CB
SSB=SB*SB
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C GAM appears as p in the text.
GAM=(DIFFR(ML)+XIZS(MT7))/XIZS(M7)
GAM2=425D0% (H¥H*CSB/(Q=H)+4 .,D0+H)
GAM1=H=H%*SSH/ (Q~H) +AL F+H
USE (%) FOR NO SO.AR PANEL CASE AND (%%x%) FOR SU_AR PANEL CASE., THE 125.
FT LB SEC SEC REPRESENTS THE RUOLL PITCH INERTIA DIFFERENTIAL DICTATED BY
A PARTICU.AR SET OF PANELS AND MUST BE AL TERED TU MATCH THE PANELS CHOSEN
AL F=GAM%*=RATIO(M2) (%)
C AL F=GAM+125,D0/XTIZS(MT) (%)
C STABILITY CHECK
IF(GAM-GAM1 )} 11,111,112
12 IF(GAM-GAM2)11l,11,13
13 CONTINUE
C STABILITY CHECK
TSTT=(Q-H)=x(-A_LF+GAM-H) % (4 DO*GAM~4 ,DO~H ) -H*H*CSB*(=-ALF+GAM~H ) -H=
LH*SSB* (4 4 DO*GAM—4 . D0O~H)
IF(TSTT)11,11,9913
11 CONTINUE

eNeNal

DAMP =0.
SQR =1l.012
GO TO 6

9913 CONTINUE

C COFHFFICIENTS UF 6 TRANSFER FUNCITIUN NUMERATOR PU.YNUMIALS IN W
Ally1)=(Q-H)* (AL F~GAM+( SHB*H)+SSB*xH*H
A(1,2)=B*(A_F-GAM+CSB*H)+ (Q-H)*=(SB*H:(CB=-1.000))
A(Ls3)=Hx{SB*Bx{(CB-1,0D0)-CSBx*xH) -{Q-H)
Ally4)=-8
A(241)=-CB*SB*H*(0Q~2.,0D0%H)
A{242)=(Q-H)*(~]1sD0-ALF+GAM=~CB*H) =SHBxH*( SB*Q+CR*B)-CSH*H*H
A(2,3)=B%(GAM-A_F-1.00~-CRxH-SSB*H)+CB=SB¥H¥H
A{2,4)=0.D0
A(3,1)={Q-H)*SH*XH-CB*SBx*H%{0-2.D0%H)
A(3,2)=(Q-H)*(1l.DO+ALF-GAM)+H*=(CSB*O+SSB*H+SB*B*(1.,00-CB))
A(343)=B%{1.DO0+ALF-GAM)+Ch*H* (CBx*B+SH*H)
A(3,4)=0.D0
A{441)=(Q-H)*(4D0-4.DO*GAM+CBHH+SSB¥*H )} +( SB%H*H
A{442)==SBxCB*H* (Q=H)+H*xB* (CB+SSBI+4.00%B* (1.D0-GAM)
A{4,3)=-ALF*(Q-H)+SB¥*H*(~-CB*B-SB*H)
Albty4)=-B*A_F
A(5,1)=CB*H*{ AL F-GAM+H)~-SSBxH*H
A(5,2)==SBx*H
A(5,3)=CB*H* (AL F-GAM+H)-SSBxH*H
A{544)=—-SB*H
Al641)=4,D0%SBxH*x (GAM=1.D0) ~SB*H*H* (1, 0D0+CH)
A(642)=CB*H*(~A_F=-3,D0%GAM+3,D0)
A(643)=SB*H*(GAM=1,D0)~SBxHEH*(1.,00+C8)
Albs4)=—CB*H*AL_F

C COEFFICIENTS OF CHARACTERISTIC POLYNOMIAL IN w
D(1)={Q-H)*(—ALF+GAM~H) % (4 . DO*GAM=4 ,DO-H) ~H*H*C SR {~ALF+GAM=—H)~Hx*
1HXSSB* (4. DO*GAM=-4 ,D0-H)
DI2)={-A_F+GAM-H)* {4, DO*GAM-4 ,D0O-H) %8B
D(4)=ALF*(-GAM+2 ,DO+H) +GAM*GAM+2.D0* (14 DO~H)*GAM=3,D0+H+H*H
D(3)=(Q-H)*D (4 ) +HEH*CSBH= (2. DORAL F+2 s DOXGAM=3,DO+H) +H*H*SSB* (-GAM
1+H+2.D0)
0D(4)=D(4)=8
D(5)=ALF*x(Q-H)+H*H*{ AL F*CSB+SS8B)
D(6)=A_F =B
W=0.00
DU 15 N=1,3
DO 14 M=1,6
CHID=(A(My1)~A(My3)*WHW)*%2+ (A (My2) % W—-A(My4 ) EWxE3 ) %%2
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C EVALUATION OF MAGNITUDE OF NUMERATORS OF 6 TRANSFER FUNCTIONS AT W=0,W=1l,W=2
CHID=DSQRT(CHID)
CHI{NyM)=CHID
14 CONTINUE .
EVALUATION OF MAGNITUDE SQUARED VALUE OF DENOMENATOR OF TRANSFER FUNCTION
AT W=0yW=1,W=2
E(N)=(D(1)=D(3) *W*W+D (D) xWk*4 ) %2+ (D(2) *W~D(4) *Wk%x3+D( 6) ¥W**5) xx%2
15 W=wW+1.DO
SQR=0.D0
€23=DCOS(23.5D0%*F)
S23=DSIN(23.5D0%F)
C USER INPUT ORBIT ALTITUDE IN NAUTICAL MILES
ALT=600.D0
C USER INPUT SIGMA IN RADIANS , THE ORBIT INCL INATION ANGLE
SIGMA=1.D0%3,14159200/6.D0
P1=3.,14159200
CMX=XMXP*XME/ (((3440,D0+ALT)*6076.D0)*%3)
CMO=XMO *XME/(((3440.D0+ALT)*6076.,D0)**3)
SS=DSIN(SIGMA)
CS=DCOS(SIGMA)
UMC=DSORT{1.00-(3440.D0/(3440.,D0+ALT))*%2)
C BYPASS IF NO SO.AR PANELS
[F{XMXP)1001,1000,1001
1001 CONTINUE
C FINDING WORST CASE LAMDA,EPSILUN,ZETA, AND TAU
C ANG_E INCREMENT FOR L AMDA AND EPSILON SEARCH IN RADIANS
XSEAT=30.D0%F
C ANG.E INCREMENT FOR ZETA AND TAU SEARCH IN RADIANS
XSEAR=45,D0%F
IF(NFG1)2000,2001,2000

2000 CONTINUE
XL AM=0.00
DO 100 IS0=1,412
2001 IF(NFG2)2002,2003,2002

2002 CONTINUE
EPS_=0.D0
DO 101 ISi=1,12
2003 TF(NFG3)2004,42005,2004

2004 CONTINUE
2=0.00
DO 102 152=1,48
2005 IF(NFG4)2006,2007,2006

2006 CONTINUE
T=0.D0
DO 103 1S3=1,8

2007 CONTINUE
SE=DSIN(EPSL )
CE=DCOS(EPS.)
SXL=DSIN(XLAM)
CXx.=DCOS(X.AM)
ST=DSIN(T)
CT=DCOS(T)
SZ=DSIN(Z)
CZ=DCOS(2)
SXMU=CE*SS*CXL-SE*(CS %523-SS*SXL*C23)
CXMU=DSOQRT (1.D0-SXMU*SXMU)
IF(DABS(CXMU)-.01D0} 105,105,104
105 CONTINUE
SALZ=1.D0
CA.2=0.00

[aNal
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cumB=1.0D0
GO TO 108
104 CONTINUE
SALZ =(CX.*{SE#C23%CS+SE*$23%SS*SXL }+SXL ¥ (SEXC23%SS*CXL-CE*SS*SXL )
1) /7CXMu
CALZ=DSQRT(1.D0-SALZ*SA_Z)
CuMB=UMC /C XMU
IF(DABS(CUMB)-1.D0)106,106,107

107 CONTINUE
CumB=1.D0
106 CONTINUE

108 CONTINUE
SUMB=0DSQRT(1.D0-CUMB*CUMB)
UMB=DARSIN(SUMB)

C COMPUTATION OF DISTURBANCE TUORQUES
AX=2.DO%SXMU*SS*SAL Z-CXMU*CS
AX=AX*CMX
AZ=~SSHSXMU*C AL Z%=(CMX
BX=2.D0*SXMURSS*CAL Z*CMX
BZ=SS*SXMU*SAL Z+C XMU*CS
BZ=BZ*CMX
AOX=2.D0*AXXSUMB/PI
AQZ=2.D0xAZ*SUMB/P ]
AlX=AX*(PI-UMB-SUMB=*CUMB) /b1
AlZ=AZ%(PI-UMB-SUMB*CUMB)/PI
AZ2X=AX* (SUMB+SUMB-(4.D0/3.00)*SUMB*SUMB*SUMB) /P1
A27=AZ*(SUMB+SUMB-(4,00/3.D0)*SUMB*SUMB*SUMB) /P
BLX=BX*(PI-UMB+SUMB*CUMB) /P
BlZ=BZ*(PI-UMB+SUMB*=CUMB)}/P1
B2X=BX*{(4.D0/3.D0)*SUMB*SUMB*SUMB) /P 1
B2Z2=B2%((4.D0/3.D0)%*SUMB*SUMB=SUMB) /P
AO0=CZ*CS *CMO
Al=2.D0%SZ*ST*SS *=CMO
BO=-SZ*CT=*CS *CMO
B1=-SZ*ST*SS *CMO
CCO=A0+A0X/2.D0O
CCl=B0O+A02/2.D0
CC31=A1+B1X.
CC32=812
CC41=Bl+Al1Z
CCa2=A1X
CC61=B2X
cCce62=B22
CC71=A2X
CC72=A22

C COMPUTATION OF WEIGHTED MEAN SQUARE ERRUR
Do 23 N=2y6v2
C (N }=CFIN )R COLCCO*CHI (L yN=1)+CCL*=CHI(L4N))%%2 ) /E(1)+.5D0O*{({
LCC31*CHI(2yN=11+4CC32%CHI(2yN)) %2+ {CCa41%CHI(24N)+CCa42%CHI(24N=-1) )%=

1%2)
2/EL2)+{CCOL=CHI(34N-1)+CCO2%CHI(34N))%%2+(CCTL*CHI(3,N=-1)+CLT72%
BCHI(3,N)I®%2)/E(3)))

23 CUNTINUE
RH=C (2)+C (4 )+C (6)
RH=DSORT (RH}

C FINDING LARGEST SQRT(WEIGHTED MEAN SQUARE ERRUR)
[FIRH=S5S0R)200,200,201
201 SQR=RH
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C CuM

C SAvV

200

2011
103
2012
2013
102
2014
2015
101
2016
2017
100
2018

PONENTS OF WEIGHTED MEAN SQUARLE ERRUR
csSv(z)=C(2)
CSV(4)=C(4)
CSvie)=C(6)

ING WORST CASE ANGLES
TS=T
75=1
EPS.S=EPSL
XL AMS=XL_ AM
CONT INUE
IFINFG4)2011,2012,2011
COUNT INUE
T=T+XSEAR
IF(NFG3)2013,2014,2013
CONTINUE
Z=2+XSEAR
IFINFG2)2015,42016,2015
CONT INUE
EPSL=EPSL +XSEAT
IF(NFG1)2017,2018,2017
CONTINUE
XL AM=X_ AM+XSEAT
CONTINUE

C BYPASS FOR PANE. CASE

IF(XMXP)1101,1000,1101

C FINDING WORST CASE R (WEIGHTED MEAN SQR ERROUR) AS A FUNCTION OF THE
C MAGNETIC MOMENT LOCATIUN FOR THE CASE UF NOU SUL AR PANELS

1000

CONT INUE
CAPA=CS#CS*(CF(2)*CHI (141 )%%2+CF(4)*CHI(1,3)%%2+CF(6)%CHI(145)%%2)
1/76(1)
CAPB=CS*CS*(CF(2)%CHI(142)%%2+CF(4)%CHI(1,4)%%2+CF(6)%CHI(1,y6)*%2)
1/E(1)

CAPC==2.,0D0%CS*CS* (CF(2)*CHI(1y1)*CHI(1,2)+CF(4)%CHI(1,3)*%CHI(1+4)
1+CF(6)#CHI(145)*CHI(1,6))/E(])

CAPD=.5D0*%SS%SS*% (4, DO*(CF(2)%CHI(2,1)*%2+CF(4})*CHI(2,3)*%2+CF(6)*
ICHI(2,5)%%2)+(CH(2)%RCHI(242)%%2+CH(4)XCHI(24y4)x%2+CF{6)*CHI(246) %%
22))/E(2)

TWOZ=DATANZ2 (CAPC,CAPA-CAPB)

XMAX(1)=CAPD

IMX(1)=P1/2.00

TMX(1)=ZMX(1)

XMAX(2)=CAPA

IMX(2)=0.D0

TMX(2)=ZMX (1)

TMX(3)=0.D0

IMX(3)=TW0Z/2.D0

CZ=DCOS(ZIMX(3))

SZ=DSIN(ZMX(3))

XMAX(3)=CAPA*CZ2*CZ+CAPB*SZ*SZ+CAPC*CZ2*SZ

RH=0.D0

C FINDING LARGEST WEIGHTED NORMAL IZED MEAN SQUARE ERRUR FUNCTION FOR NO PANEL
C CASE

1002
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DO 1003 MXx=1,3
1F(XMAX(MX)-RH)1003,1002,1002
RH=XMAX{MX)

Z=IMX(MX)

T=TMX(MX)

CzZ=DCO0S(2Z)

SZ=DSIN(Z)

CT=DCOS(T)

ST=DSINI(T)



1003 CONTINUE
! AO=CZ%*CS *CMO
Al=2.DO*SZ*ST%SS *CMO
BO==SZ*CT*CS *CMO
B1==SZ#%ST*SS *CMO
CCO=A0
CC1l=80
CC31=Al
CC32=0.00
CC41=81
CC42=0.00
CC61=0.D0
CC62=0.00
CC71=0.D0
CC72=0.D0
DO123 N=246,42
CIN )=CF(N )*=(((CCO*CHI(L1yN-1)+CCYI*CHI(L14N))}*%2 ) /E(1)+.5D0*(((
1CC31*#CHI(2,N=-1)}+CC32%CHI(2yN))%*2+(CC41*CHI(2yN)+CC42*%CHI{2yN-1) ) *x*
1%2)
2/7E(2)+((CCOL*CHI(3¢N=-1)+CCH2%CHI(3yN) ) *%2+{CCTLI*CHI(34N=-1)+CCT72%
3CHI(3,N))I*%2)/E(3)))
123 COUNTINUE
C FINDING SOQRT(WEIGHTED MEAN SQR ERRUR FCN) FUR NU PANEL CASE
RH=DSQRT{RH} =*CMO
SQR=RH
RF=RT
C COMPONENTS OF WEIGHTED MEAN SQUARE ERRUR FUR NOU PANEL CASE
Csviz)=Ct2)
CSVI(4)=C(4)
CSV{6)=C(6)
C WORST CASE ANG.ES FOR NU PANE. CASE
75=17
15=1
EPSILS=0.D0
Xl AMS=0.D0
1101 CONTINUE
COE(L)=D(1)
COE(2)=D(2)
COE(3)=D(3)
COE(4)=D(4)
COE(5)=D(b)
CUE(6)=D(6)
IC=6
C FACTORING NORMAL IZED CHARACTERISTIC PULYNOUMIAL
CA_L PRBMI{COEsICyXyY4POLyIR,TER)
X(6)=0.
Y{(6)=0.
IF{IER)20421,+20
C A.TERNATE METHOD OF FACTORING PULYNOMI AL
20 CONTINUE
H=HA (M4&)
H=-H
B=BG(M5)
Q=QG(M6)
0OMG=,00100
XI=XIZS(M7)
QMAT(1+1)=0.D0
QMAT(1,43)=0.00
QMAT(1,4)=0.D0
QMAT(1+5)=0.D0
OMAT(5,1)=0.D0
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c

QMAT(5,2)=0.D0

QMAT(543)=0.D0

QMAT(5,5)=0.D0

QMAT(1,2)=1.D0

QMAT(544)=1.D0

OMAT(2+1)=4.D0%UMG*UMG *{1.D0-GAM) /AL F+OMG*H/ (AL F*X1)-SB*CB*0MG *H
1%H/ (AL F*X1%*B)

QMAT (242)=-SSB*H*H/ (AL F*X]%*B)
QMAT(2,43)=(Q-H*UMG ) %xSB*H/ (ALF*XT*B)+CB*0OMG*H/ (AL F*X] )
QMAT(2451=SSB*UMG*H*H/ (AL F*XI*8)

QMAT(3,1)=CB*0OMG*H/ (8)

QMAT(3,2)=H%*SB/B

QMAT(3,43)=(H*0MG~-Q) /B

OMAT (344)=CB*H/B

QMAT(3,5)=~-0MG*H*SB/B

QMAT (441 )=—-CSB*UMG*H*H/ (XI*B)

QMAT (4,42 ) =0OMG*(GAM=1.DO-ALF)-H/XI-CB*SB*HXH/ (X]*B)

QMAT (443 )=(Q~H*OMG) *CB*H/ (XT*B)}~-OMG*SB*H/ X1

QMAT (444 )=-CSBxHXH/ (B*X])

QMAT (4495)=0MG*H/ XTI -OMG*0OMG* { GAM-AL I} +C B*SB*0OMG*H*H/ (X 1*B)
QMAT(244)=20MG*(1.00+(1.D0-GAM) /AL F )} +H/ (AL F*X1)~CB*SB*H%*H/ (ALF*X1*B
1)

L=5

IPRNT=1

IPRNT=0

CALL, HESSEN(QMAT,L)

CALL QREIG(QMAT,L ,X 'Y » IPRNT)

C NORMAL IZING RUOTS

DO 9182 NFIN =145
Y{NFIN )=Y(NFIN )*1000.
X(NFIN )=X(NFIN )*1000.

9182 CONTINUE

21 CONTINUE

C FINDING LEAST DAMPED ROQT OF CHARACTERISTIC PUL YNOMIAL
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DAM=100.
DO 16 NRT=1,5
X(NRT)==X(NRT)
IF (XINRT)-DAM) 18,416,416
DAM=X{NRT)
DAMF=Y(NRT)
CONT INUE
DAMP =DAM
DAMPF=DAMF
CONTINUE
XI1Z=XT2ZS(M7)
RETURN




APPENDIX E

DEVELOPMENT OF THE STATE MATRIX FOR THE EQUATION SET
WITH DRIVEN SOLAR PANELS

Let

X = b,

Xo = .

Xg=vy .

X, =0,

Xg = v,
a = - SBORH, + 1 (11)
b= Q| + 15 —15)+S*BH, +1,,13)
¢ =CPB,~SPH,, .
d - 40515 - 1) + SPBAH, + Qif ,o(13)
e - Q¥ (13) 1+ QSBCAH ), - O (1),
[k, - HyQq.,
8- - QU vIg -1 -CoBHy 1 ,(13),
h = SECEH ) +1,,(33) .
p - -SBB,-CpH, .
q - 403 (13) 1 SRORH N+ Al ,((33)
r-Q.C2pH, - O, ~1]) - Q. (13)

0 b oM e 17 70 po '
s-Igc ety
t=1/pt I,(13)c
and

i -1
- T—“T"’,
123) - 151 .



After rewriting Equations (7.5), (7.6), and (7.7) in the notation introduced above,
- H,SBxy — CBH px, + B kg~ CBQGH X + HSBOGX, + fx5 =0,
—Iy%g +1,((13)x, + axy + bX, + CXg + dx | + eXg + OBk Xy =0,
and

1p0(31)22 —Ig%, + gXg + hXy + pXg+ QX | 41X — K SBxg = 0.

After rearranging terms,

- 1 .
Xg = - B, (fxg+ HySPQgx, — CRQGH, x| — H,SPx o~ CAH x )
[oo(18)x, 1 [Xg = — (axg + bxy + CXg + dx | + X5+ Cfk Xg),

and

— g%, + 1 o(3DXg = - (8%p + hXy + pXg+ Gy +IXg ~ k SPXg).,
where Ip0(13) = Ip0(31).

After solving the second two equations sinultaneously,
%y=C, {x2 [13’3 N glp0(13)] +x, [13’b N h1p0(13)]+ %q [13’c N plpo(ls)]
rxy[15d + al,g13)] + x [15e + oo(13)] + x4 [15CBk, - 1ho13)kSB] |
%= Cp {xy [al,0(13) + 81 ] + %y [ 01,6013 01 ]+ %5 [el,(13) + pi ] |

+ 2y [dl,0(18) + 0l [+ xg [el po(13) 411 | + x5 [1,((13)CBk g -1 kSB]}.

After eliminating )23 and rearranging terms, the equation set can be written directly in its state matrix

form:

Xy = x4(0) + x5(1) + X5(0) + X,(0) + x(0),

- ., N . S
%g=Cp {x [15d + 0l (13) + 2 CRQH ), | + %5 152+ a1,413) + B, HySB ]
-1

v %5 [ 15CBk g~ 1,013k SB - l-;z £l oy [15D 4 bl p(13) + Esg CBH,|

- S
s xgflge 11 (13) - 5, HbSBQO] b
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.-

Xg = B—g- [x (- CBQGH ) + X~ HSB) + x5(f) + x,(~ CBH ) + Xo(HpSpR)],

%, - Cy {xl [d1p0(13) sal] v B—t CBQOHb:' + Xy [alp0(13) el v 5 HDSB]
8 4

. t , t
18I0k g 1k SP- 5- f] v x, [b1p0(13) hlfs g C,BHb:I

, t i
1) 11 = - HbSBQOj“’

+ Xg [Ip
+Xg [el
and

25 = X (0) + x4(0) + X5(0) + X (1) + x5(0) .
The elements of the system state matrix are

a(l1) = 0,
a(12) = 1,
a(13) = 0,
a(14) = 0,
a(15) = 0,

a(21) = C,ft jd 1 1,13) + 5 C,BQOHb]_
L g

a(22) = C fi Ja - 1130 fBig SﬁHb],

2(23) = Ckz3'Cﬂkg 1130k S - Big f:,.
a(24) = Ck[]g’b v Ipo(lb)h . Tj; Cﬂ”b]'
a(25) - ck[ls'e V1 Lg13)r - Big HbS/%QO],
a(31) - 1'31; (CBQH)) .

a(32) - §1—(Hbsm :
g
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a@3) - 5~ (-0,

4

a(34) = B—l— (CBH,) .
g

a(35) = 5 (- H,Sp0) .
4

a(41) = ck[lpo(m)d w19+ 5= CﬁQOHl,].
a(42) = C k[l pol1d)a 41,8 + Bt— H bsﬁ]-
a(43) = Ck[lp0(13)CBkg ~1{k SB - l_;_g' f:|,
a(44) = Ckl:lpo(13)b fIhe o cgnb]

a(45) = Cyfl o1 + 1t = - HbSBQO:‘.

a(k1) =0,

a(52)=0,

a(53)=0,

a(b4) =1,
and

a(55) = 0 .
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APPENDIX F
LISTING OF LINEAR DIGITAL COMPUTER SIMULATION PROGRAM
The user may substitute into this computer program any parameter set of his choosing. Similarly,
he is free to alter the initial condition set and the length of the computer run by making the appropri-
ate substitutions. In addition, this program can be used to make disturbance torque runs such as those
described in Section (5.5) and for finding Fourier coefficients as defined in Section (5.7). With the
exception of the Fourier coefficient run, the only computer output is 5-in. by 40-in. Calcomp computer

plots that are automatically scaled for each variable.

IMPLICIT REAL*8(A-HyU~2,%)
REAL %4 XyaYoTSS TTT
DIMENSTON X(60104+4),Y(601044)TSS{6010),Q(8)4Q1(8),0H(8)
DIMENSION FOUR(8420)3sTRIG(18)sTRIGL(18) 4B(5yb)
F=3.141592D0/7180.00
FI=180.D0/3.141592D0
CNFOR=0 BYPASSES FUURIER CUEFFICIENT ROUTINE REFERRED TUO IN SECTIUN 5.7
CN¥OR=1 ACTIVATES FOURIER CUEFFICIENT ROUTINE
NFOR=0Q
CMAYDY IS DO '.OQUP L IMIT
MAYDY=2
CINPUT IN DEGREES
GAMM=0,00
PHI=0.D00
PSI=0.00
PHID=0.,DO
PSID=0.bLO
CW IS FREQUENCY OF TIME VARYING CUEFFICIENTS(DON'T SET EQUAL TO ZERU)
W=1.0-3
DO 99 N5=1,2
GO TO (201,202,203} 4N5
201 CONTINUE
CAMPL ITUDE OF MOMENTUM BIAS VARIATIUN

U=0.D0

CINTEGRATION TIME INCREMENT IN SECONULS
DT=.4D0

CNSTOP*DT=THE NUMBER OF SECUNDS BETWEEN EACH COMPUTED PUINT THAT IS PLOTTED
NSTOP=50

CTOTAL NUMBER OF PLOT PUINTS FOR EACH VARIABLE MUST BE LESS THAN 6000.
CSIMU_ATION TIME OFF IN SECONDS
TMOFF=90000.0D0
COPTIMUM PARAMETER SET FOR EXAMPLE 2
X1Z2=200.D0
¢ GAM appears as p in the text.
GAM=2200.D0/200.D0O
ALF=2325.D0/200.D0
HO==10.0D0
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BG=.75D0
XKG=1.D-3
BETA=0.DO
PHI=10.D0
PS1=10.D0
GO TO 299

202 CONTINUE

COPTIMUM PARAMETER SET FOR EXAMPLE 1

GAM=2010.D0/10.00
AL F=,75D0*GAM
HO==2.50D0
X1Z2=10.00
BG=.75D0
XKG=433D-2
BETA=0.D0
PHI=10.D0
PSI=10.D0
GO TO 299
203 CONTINUE
299 CONTINUE
CNSTEP IS INCRIMENTED ONCE EACH TIME STEP
NSTEF=NSTOP
SB=DSIN(BETA)
CB=DCOS(BETA)
SSB=SB*5B
csSB=CB*CB
DO 9959 MAY=1,MAYDY
C=0.D0
IF (NFOR)9123,680549123
9123 CONTINUE
CPER IS TWICE THE PERIOL OF THE PERIUDIC COEFFICIENTS IN SECONDS
PER=4.D0%3.141592D0/W
PRD=PER
WU=W*U
DO 6805 NT=1,17
DO 6806 NF=1,48
FOURINF4NT)=0.D0
6806 CONTINUE
6805 CONTINUE
T=0.D0
CINITIAL CONDITIONS
CQI IS THE INTEGRAL OF Q
QI(1l)=PHI*F
QI(2)=PHID*F
QI{(3)=GAMM=F
QI(4)=PSID*F
QI(5)=PSI*F
CCARDS WITH (*%x)ARE USED FOR SINUSOIDAL DISTURBANCES, WHILE CARDS WITH
C{=) ARE USED FOR SQUARE WAVE DISTURBANCES
CVARIATIONAL MOMENTUM BIAS

A=0.DO
CDERIVATIVE OF VARIATIUNAL MOMENTUM BIAS

WASU#W ()

c WA=U%W %4.D0/3.141592D0 (%)

DO 114 1L1=1,5
DO 114 1.2=1,45
114 B(.1,.2)=0.D0
CSYSTEM A MATRIX
B(1,2)=1.00
B(241)=(1eD~3/ALF)*{4.0-3%(1.D00-GAM)+(HO+A)/X12Z)
1-(SB*CB*(HO+A)*%2) /(ALF*XTZ*BG*1.D3)
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B(242)==SSB*{(HO+A)*%2 )/ {ALF*X]Z2%BG)
B(293)= ({(XKG-(HO+A)*1,D=3)%SB*(HO+A)/BG+CB*1.D=-3%(HO+A)-SB*WA)/
LOAL F%XIZ)
B(294)=14D-3%(1.D0+(1.D0-GAM) /ALF)+( (HO+A)-CB*SB*( (HO+A}*%*2)/BG)
1/(ALF%X12)
Bl295)=(SSB*(1.0=-3)*(HO+A)*%2)/ (A_LF®XIZ%BG)
B(3y1)=((1,0-3%(HO+A)/BG)*CH)
B(3,2)=(HO+A)*5B/BG
B(3+3)=((-XKG/BG)+( 1.0-3%(HO+A))/BG)
B{3y4)=((HO+A)/BG})*CB
B(395)==(1.D-3)*(HO+A}*SB/BG
Bl4yl )=({(HO+A)*%2)/(1.0+3%BG*XIZ2))})*(-CSB)
B(442)={({1eD=3)%(GAM~1.,D0=ALF)=((HO+A)+CB*SB*((HO+A)*%*2)/BG)/XIZ
Blay3)=((XKG-{HO+A)* 1,D-3)*CB8*(HO+A)/BG-(CB*WA+SB*(HO+A)*1.D-3)1}/
1X12
Bl4ys)=((—(HO+A)*%2)/(XIZ*BG))*CSB
B(495)=—{(GAM-ALF)*1.D-6+((HO+A)*]1.D-3+CB*SB*{ (HO+A)*%2)%*1.D~3/BG)/
1xI1z
B(5,4)1=1.D0
CFORMATION OF 5 SYSTEM STATES
DO 37 NS1l=1,5
Q(NS1)=0.00
DO 37 NS2=1+5
37 QINS1)=B(NS1,NS2)*QI(NS2)+Q{(NS1)
NTIM=1
NXY=1
CTOP OF INTEGRATIUN SCHEME
19 CONTINUE
XTIM=NTIM
T=DT*1000.D0*C+DTxXTIM
IF(NSTEP~-NSTOP) 500,501,501
501 CONTINUE
X{NXYqsl)=A
X(NXY2)=QT(5)*FI
Y{NXY,1)=QI(1)=F1
YINXY$2)=QI(3)*F]
CCAN DEFINE X({NXYy3AND4) AND Y{NXY,3AND4) It DESIRED
TSSINXY)=T/60.
NXY=NXY+1
NSTEP=0
500 CUNTINUE
NSTEP=NSTEP+1
CHOLD LAST INTEGRATIUN STkP
DO 2001 N1=1,5
2001 QHIN1)=Q(N1)
CNEXT TIME STEP
CUNITS ARE RADIANS

A=DSIGN(UDSIN(W*T)) (%)
C A=U*DSIN(W*T) *44D0/3.141592D0 (H%x)

WA=DSIGN(WU,DCUS{W=T)) (%)
C WA=WU*DCUS(W*T) #4.,00/3414159200 (333 )

CILTERATING SYSTEM A MATRIX
B(231)=(1leD=3/ALF)*(4,D-35%(1eD0O-GAM)+{HO+A)/XIZ)
1-(SB*CB*(HO+A) %32} / (AL F*X]1Z%#BG*1.03)
B{2y2)==-SSB*{{(HO+A)**%2)/(ALF*XIZ%BG)
B(2¢3)= ({XKG=(HO+A)%x1.0-3)%SB*{(HO+A)/BG+CB8%*1.0-3%(HO+A)-SB=WA)/
LEAL F%X1Z)
B(294)=1.0-3%(1.D0+(1.D0=-GAM} /ALF)+{{HO+A)-CB*SB*( (HO+A)*%2)/BG)
1/(CALF%X12)
B(295)=(SSB*(1.D-3)%(HO+A)}*%2)/ (ALF*XIZ*BG)
B(3y1)=((1.D~3%(HO+A)/BG)*CHB)
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B(3,2)=(HO+A)*SB/BG

B(343)=((-XKG/BG)+( 1.D=3%(HO+A))/BG)
B(3,4)=((HO+A)/BG)*CB
B{3y5)==(1.D-3)%(HO+A)*SB/BG

Bl4ysl I={((HO+A)®%2) /(1. D+3*%BG*XIZ) )% (-CSB)

B(492)=(1.D-3)1%(GAM~1.D0-ALF)~((HO+A)+CB*SB*( (HO+A)}*%2)/BG) /X172
Bl4y3)=((XKG-(HO+A}* 1.D=3)%CB*(HO+A)/BG-(CB¥*WA+SB*(HO+A) %1 D=3))/
1xI2z

Bla,4)=((~{HO+A)%%2)/(X]IZ%*BG))*CSH
Bl4y5)==(GAM=AL F}*1.0~6+((HO+A) %1, D~3+CB*SB*( (HO+A)*%2)%1.D~3/BG)/
1X1z
CFORMING 5 SYSTEM STATES
DO 38 NS1=1,5
Q(NS1)=0.DO
DO 38 NS2=1,5
38 Q(NS1)=B(NS1,NS2)*QI(NS2)+Q(NS1)
CFOURIER COEFFICIENT ROUTINE

CTHIS ROUTINE ON_Y WORKS IF (ABS(T-PRD)-.1) IS NEGATIVE AT SUME PUINT IN TIME

IF({NFOR)950056910,9500
9500 CONTINUE
W=W/2.0D0

TRIGL(1)=1.D0
TRIG (1)=1.D0
TRIGL (2)=DCOS(W*(T=-DT))
TRIG (2)=DCOS(W*(T ))
TRIGL (3)=DCOS(Wx(T-DT)=*2.D0)
TRIG (3)=DCOS{wx(T }*x2.D0)
TRIGL (4)=DCOS(W*(T=-DT)*%3,0L0)
TRIG (4)=DCOS{wW=(T 1*3.00)
TRIGL (5)=DCOS(Wx(T-DT)}*%*4.00)
TRIG (5)=DCOAS{Wx(T 1 %4 ,00)
TRIGL (6)=DCOS(W*(T-DT)*5.,00)
TRIG (6)=DCOS(Wx(T }*5,D0)
TRIGL (7)=DCOS(W*(T-DT)*64,D0)
TRIG (7)=DCOS(W*(T )*6.,00)
TRIGL (8)=DCOS(W*(T-DT}*7,0D0)
TRIG (8)=DCOS(W=(T )*7.D0)
TRIGL (9)=DCUS(Wx(T~-DT)%*8,00)
TRIG (9)=DCOS(wW*(T )*8.D0)
TRIGL(10)=DSIN(W*(T~DT)*1.D0)
TRIG (10)=DSIN(Wx(T )*1.00)
TRIGL (11)=DSIN(W*(T~DT)*2.D0)
TRIG (11)=DSIN(WX(T }%2.D0)
TRIGL (12)=DSIN(WX(T~-DT}%*3.D0)
TRIG (12)=DSIN(Wx(T )*¥3.D0)
TRIGL (13)=DSIN(W*x(T~DT)*4,D0)
TRIG (13)=DSIN(Wx(T )*4.D0)
TRIGL (14)=DSIN(W*(T-DT)*5.D0)
TRIG (14)=DSIN(W*(T }*%5.D0)
TRIGL (15)=DSINIW*(T~DT}*6.D0)
TRIG (15)=DSIN(W=(T )*6.,D0)
TRIGL (16)=DSIN(W*(T-DT)*7.00)
TRIG (16)=DSIN(wWx(T }*7.D0)
TRIGL(17)=DSIN(Wx(T~DT)*8.D0)
TRIG (17)=DSIN{wx(T )*8.D0)
W=W*2.D0
DO 6902 NFOUR=1,5
DU 6901 NTRIG=1,417
FOUR(NFOURyNTRIG)=FOUR{NFUURyNTRIG)+(3.DO*Q(NFUOUR)*TRIG(NTRIG )~
1QH(NFOUR}*TRIGL (NTRIG))*{(DT/2.D0)
6901 CONTINUE
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6902 CONTINUE
IF(DABS(T-PRD)~41D0)6911,6910,6910
6911 CONTINUE
CINHIBIT TO ALLOW INITIAL TRANSIENT TO DIE DUWN
IF(T~-183480.D0)6711,6712,6712
6712 CONTINUE
DO 6730 N12=1,5
DO 6735 N15=2,49
N20=N15+8
FOUR(N124N15)=FOUR(NL2,N15)%%2+FOUR{NL2yN20)=*
FOUR{N12sNLS5)=DSQRT(FOUR(N124,N15) )
6735 CONT INUE
6730 CONTINUE
6925 FORMAT(' MAGNITUDE OF FUOURIER COEFFICIENTS FOR SYSTEM STATES 1 THR
1U5y DC THRU EIGTH HARMONIC RESPECTIVELY')
WRITE(6,6925)
WRITE(646926) ({FOUR(NF4NT)NF=1y5 }yNT=1, 9)
6926 FUORMAT(5D14.6)
6711 CONTINUE
CINCREMENT PERIOUD FUR FUURIER INTEGRATION AND INITIALIZATION OF SAME
PRD=PRD+PER
DO 6905 NT=1,17
DO 6906 NF=146
FOUR(NFsNT)=0.D0
6906 CONTINUE
6905 CUNTINUE
6910 CONTINUE
CINTEGRATION CF STATE EQUATION 4, QI IS INTEGRAL OF Q
DO 2002 N2=1,5
2002 QIIN2)=0QI{N2)+(3.D0*Q(N2)-QH(N2))*{DT/2.D0)
NTIM=NTIM+1
IF(NTIM-1000)31,32,32
32 C=C+1.00
NT IM=0
31 CONTINUE
IF(T-TMOFF)19,19,100
100 CUNTINUE
NXY=NXY=-1
CPLOT ROUTINE REQUIRES A CALCOMP 565/570 PLUTTER AND ASSOCIATED SUBPROGRAMS
CA__ P_OTXY (XsYTSSyNXY)
NXY=1
9123 CONTINUE
CRESET INITIAL CONDITIONS
PHI=5.D0
PSI=5.D0
9959 CONTINUE
99 CONTINUE
C
CA_l. CAL 999
CONT INUE
RETURN
END

SUBROUTINE PLOTXY (X,YsTSSyNXY)
CFUR ' ISTING , SEE APPENDIX G
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APPENDIX G
LISTING OF NONLINEAR DIGITAL COMPUTER SIMULATION PROGRAM
The user may substitute into this computer program any parameter set and any initial condition
set of his choosing. He is also free to alter the problem simulation time. Disturbance torque runs
can be made by assuming nonzero amplitudes for the disturbance torque coefficients.
The only computer output is 5-in. by 40-in. Calcomp computer plots that are automatically scaled
for each variable.

IMPLICIT REAL*B(A-H,U=-7,3%)
REALL %4 X4Y,TSS
DIMENSION X(601044),Y(601044)4TSS(6010),Q(8),01(8),0H(8)
DO 899 Nb=1,2
F=3.141592D0/180.D0
FI1=180.0D00/3.14159200

CLIMIT OF DO 1.OOP 300
MAYDY=2

CAMP_ITUDE OF DISTURBANCE TOURQUES AT DC AND W RAD/SEC RESPECTIVELY
AMXDC=0.D0
AMYDC=0.D0O
AMZDC=0.D0
AMX=0.D0
AMY=0.D0
AMZ=0.00
W=.00100
OMEGA=1.D-3

CRESET INITIAL CONDITIUNS
A=0.D0O
T=0.D0

CSIMU_ATION TIME OFF IN SECUNDS
TMUFF=90000.D0

CINPUT IN DEGREES
GAMM=0.DO
PHI=10.D0
PSI=10.D0
PSID=0.00
PHID=0.D0

CPITCH RATE
X15=0.D0

CPITCH POSITION
X16=0.DO
GO TO (201,2024203) N5

201 CONTINUE

COPTIMUM PARAMETER SET FOR EXAMPLE 2
XISCX=2325.D0
X15CyY=2200.D0
XISCZ=200.D0
XKGI=1.D=-3
C=.7500
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BIAS=-10.D0
BETA=0.DO
CILNTEGRATION TIME INCREMENT IN SECONDS
DT=.400
CNSTOP*DT=THE NUMBER OF SECONDS BETWEEN EACH COMPUTED POINT THAT 1S PLOTTED
NSTOP=50
CTUTA. NUMBER OF PLOT POINTS FOR EACH VARIABLE MUST Bt LESS THAN 6000.
GO TO 299
202 CONTINUE
CUPTIMUM PARAMETER SET FOR EXAMPLE 1
XISCvy=2010.D0
XISCX=XISCY*.7500
X1SCZ=10.D0
XKGI=+33D~2
C=.75D0
BIAS=-2.5D0
BETA=0.DO
GO T0 299
203 CONTINUE
299 CONTINUE
DO 300 NCS=1,MAYDY
CB=DCOS(BETA)
SB=DSIN(BETA)
CNSTEP 1S INCRIMENTEU ONCE EACH TIME STEP
NSTEP=NSTOP
CWHEEL REACTION TORQUE
X11=0.D0
CWHEEL MOMENTUM
X10=BIAS
X16=0.D0
X15=0.00
C
CINITIAL CONDITIONS
CQI IS THE INTEGRAL UF @
QI(1)=GAMM=F
SPHI=DSIN(PHI*F)
CPHI=DCOS(PHI*F)
SX16=DSIN(X16*F)
CX16=DCOS(X16%*F)
SPSI=DSIN(PSI*F)
CPSI=DCOS(PSI*F)
SG=DSIN(QI(1))
CG=DCOS{QI(1)})
QI(2)=~PSID*F*S5X16%CPHI+PHID*F*CX16- (CX16*SPSI+SX16%*SPHI*CPS
11)*1.D-3
QI(3)=PSID*F*SPHI+X15%F~ (CPHI*CPSI)*1.0-3
QI(4)=PSID*F*CX16*%CPHI+PHID*F*SX16-(SX16*SPSI-CX16*SPHI*CPSI1)*1.D
1-3
QI{5)=PHI=*F
312 QI(6)=0.0D0
QI(T)=PSI=*F
CDIRECTION COSINES
DC11=CX16*%CPSI-SX16*SPHI*SPSI
DC12=CX16*SPST+SX16%SPHI*CPSI
DC13=-SX16*CPHI
DC21==SPSI*CPHI
DC22=CPHI*CPSI
DC23=SPHI
DC31=SX16*CPSI+CX16*SPHI*SPSI
DC32=SX16%SPSI-CX16%SPHI*CPS]
DC33=CX16*CPHI
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CGIMBAL EQUATION(GAMMA DUT)
Q(1)=(X10*(SB*CG*Q1(2)-SG*QI (3)+CB*CG*QI(4))-XKGI*QI(1))/C
CT1X EQUATION(WX DOT)
Q(2)=(QI(3)*QI(4)*(XISCY-XISCZ)+3.DO*%UMEGA*UMEGA*(XISCZ~-XISCY)}*DC2
13%DC33
1 +CB*{XKGI*QI(1)+C #Q(1))+SB*SG*X11~SB*CG*X10*(Q(1)+CB=* QI(2)-SB
2¥%QI(4)))/XISCX
CTlY EQUATION (WY DOT)
QI3)=(QI(4)*QI(2)*(XISCZ-XISCX)+3+D0%UMEGA*UMEGA*(XISCX-XISCZ)*DC
113*DC334CG*X11+SG*X10*(Q(1)+CB*QI(2)-5B*QI(4)))/XISCY
CT1Z EQUATION (WZ DOT)
Q(4)=(QI(2)*QTI(3)*(XISCX~-XISCY}+3.D0*¥UMEGA*UMEGA*(XISCY-XISCX}*DC
113%DC23-SB8%x(XKGI*QI(1)1+C *Q(L)}14CB*SG*X11-CB*CG*X10*(Q(L)+CB*QT{(2)
2-SB*QI(4)))/XISCZ
CPHI DOT EQUATIUN
Q(5)=CX16*%QI(2)+SX16*QI(4)+SPSI*1.0-3
IF(DABS(CPHII-.00100)63,64,64
63 WRITE(6465)
CPHI=DSIGN(.0010D0,CPHI)
65 FORMAT(///40X,11HGIMBAL LOCK/////)
64 CONTINUE
CpPSI DOT EQUATION
QU7)=(CX16*QI(4)=-SX16*%QI{2)-SPHI*CPSI*1.D=-3)/CPHI
CTHETA DOT EQUATION
42 Q(6)=0.D0
NT IM=1
NXY=1
CTOP OF INTEGRATION SCHEME
19 CONTINUE
XTIM=NTIM
T=DT%1000.D0*A+DT*XTIM
CUNITS ARE RADIANS
SG=DSIN(QI(1))
CG=DCOS(QI(1))
SPHI=DSIN(QI(5))
CPHI=DCOS(QI(5))
SX16=DSIN(QI(6))
CXx16=DCOS(QI(6))
SPSI=DSIN(QI(T7))
CPSI=0COS(QI(T)
DCL1=CX16*%CPSI-SX16%SPHI*5PSI
DC12=CX16%SPSI+SX16*%SPHI*CPSI
DC13=-SX16*CPHI
DC21=-SPSI*CPHI
DC22=CPHI*CPSI
DC23=SPHI
DC31=SX16%CPSI+CX16*SPHI*5PSI
DC32=SX16%SPSI~-CX16%SPHI*CPSI
DC33=CX16*CPHI
IF(NSTEP-NSTOP1500,501,501
501 CONTINUE
NSTEP=0
X(NXYs1)=X10
YINXY1)=Q1(5)*F]
XINXY2)=QI(7)*FI
YINXY,2)=Q1(1)*F1]
CCAN DEFINE X({NXY,3AND4) AND Y(NXY,3AND4) IF DESIRED
TSSINXY)=T/60.
NXY=NXY+1
500 CONTINUE
NSTEP=NSTEP+1

219



CX11 IS wWHEE. TORQUE AS IT APPEARS ON VEHICLE

CHOLD LAST INTEGRATIUON STEP
DO 2001 Nl=1,47

2001 OQH({N1)=Q(NL)

CNEXT TIME STEP

COISTURBANCE TORQUES
TOX=AMX%DSIN{W*T)+AMXDC
TDY=AMYXDSIN{W*T)+AMYDC
TOZ=AMZ*DSIN(W*T)+AMZDC

CSEE ABOVE COMMENTS
QU1)=(X10*(SB*CG*QI{2)~-SG*QI(3)+CB*CG*QI (4))~XKGI*QI(1))/C

C X11 IS MINUS WHEEL TORQUE
Q(2)=(QI{(3)*QI(4)*(XISCY=-XISCZ)+3.D0%0OMEGA*DOMEGA*(XISCZ-XISCY}=*DC2
13%DC33
1 +CB#(XKGI*QI(L1)+C *Q(1))+SB*SG*X11-SB*CG*X10*(Q(1)+CB* QI{(2)-SB
2%QI(4)))/XISCX +TDX
QI3)={01(&4)*QI(2)*(XISCZ-XISCX)}+3.00%0UMEGA*UMEGA*(XISCX=-XISCZ)*DC
113%DC33+C6*#X11+SG%X10*(Q(1)+CB*QI(2)-SB*QI(4)))/XISCY+TDY

QEa)=(QI(2)*QI(3)*(XISCX-XISCY)}+3.,D0%¥UMEGA*OMEGA*(XISCY-XISCX)=DC
113%DC23-SBx(XKGI*QI(1)+C *Q(1))+CB*SG*X11~-CB*CG*X10%({Q(1)+CB*QI(2)
2-SB*QI(4)))/XISCZ+TDZ

Q(5)=CX16*QI(2)+SX16*%QI(4)+SPSI*1.D-3

IF(DABS(CPHI)-.001D0)73,74,74

73 WRITE(6475)

CPHI=DSIGN(.001D0O4CPHI)

75 FORMAT(///7/740X,11HGIMBAL LUCK/////)
74 CONTINUE
QUE7)=(CX16*QI(4)=-SX16%QI(2)-SPHI*®CPSI*1.0-3)/CPHI
67 Q(6)=0.D0
CINTEGRATION
DO 2002 N2=1,7
2002 QI(N2)=QI(N2)+(3.D0*Q(N2)-QH(N2))*{DT/2.D0)
DO 12 N3=5,7
IF(DABS(QI(N3))~3.1415900)12,12,11
11 QI(N3)=QI(N3)-DSIGN(6,28318D0,QI(N3))
12 CONTINUE
NT IM=NT IM+1
IF(NTIM-1000)31,32,32
32 A=A+1.DO
NTIM=0
31 CONTINUE
IF(T-TMOFF)}19419,100
100 CONTINUE
NXY=NXY-1
CRPLOT ROUTINE REQUIRES A CALCOMP 565/570 PLUTTER AND ASSUCIATED SUBPROGRAMS
CALL PLOTXY (Xy9Yy3TSSaNXY)
89 CONTINUE
CRESET INITIAL CONDITIONS
PH1=5.D0
PSI=5.00
300 CONTINUE
99 CONTINUE

CA_L CA_999

CONTINUE

RETURN

END

SUBROUTINE PLOTXY (X,sYyTSSyNXY)

LOGICAL*1 TITLEL(44),TITLE2(44)

DATA TITLEL1/'VARIATIONAL YAW ANGLE OMEGA Z A33 v/
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DATA TITLE2/' ROLL ANGLEGIMBAL ANG. A22 A23 v/
DIMENSION BUFFER(8000)+X(601054),Y(601044),TSS{6010)
INTEGER BUFFER

LOGICA. FIRST/.TRUE./

IF (FIRST) CALL PLUTS (BUFFER,32000)
FIRST=.FA_ SE.
K=1
CM CAN GO FROM 1 TO 4 IF 50U DEFINED IN MAIN PRUGRAM

DO 1 M=1,2
CA__ SCALE (X{1sM)eDasNXY,1l)
XMX=XINXY+1 g M)I+5 %X (NXY+2,y,M)
AYT=0.
IF (XMX*X(NXY+]l4M)GEaO.) GU TU 2
AYT==5 %X {(NXY+1yM)/ (XMX=-X{NXY+1,M))

2 CONTINUE
TSSINXY+1)=0.
TSSINXY+2)=(TSS{NXY}))/40.
CAL. AXTS (OepOa s TITUEL(K) 94119549904 g XINXY+]1 M) 9 XINXY+2,M))
CALL AXIS (UesAYT o *MINUTE ' y=6940a90. 9 TSSINXY+1)yTSSINXY+2)})
CAL. L INE(TSSyX{1yM}yNXY,y1,0,0)
CALL PLOT (0Oay5e04y=3)
CA_L SCALE (Y(1lyM)sbaesNXY,l)
YMX=Y{(NXY+L M)} +5,%2Y{NXY+2,M)
AYT=0,
IF (YMXxY(NXY+14M)sGE-Os) GU TO 3
AYT==5.%Y(NXY+1 M)/ (YUX=Y(NXY+1,M))

3 CUNTINUE
CA.. AXIS (Oov()o,T]T'_':Z(K)v+1lvb.790.7Y(NxY+lyM)7Y(NXY+2vM))
CALL AXIS (OeasAYT 4 *MINUTE!' y=6940e+0e40.9TSSINXY)/40.)

CA_L _INE(TSSsY(1lyM)yNXY,y1,0,0)
CAaLL P_UT (43,4-5.0,-3)
1 K=K+11
CA_L P_QT (05.90o9'3)
RETURN

ENTRY CAL 999
CA__ P_UT (20¢904+999)

RETURN
END
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